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Abstract. The paper describes a modern solution for controlling a complex 

manufacturing cell, consisting of conveyors, robots, stoppers and other devices, 

using a single programmable logical controller (PLC). A special array of data 

structures is used to easily access and manage the pallets processed at the four 

robotized stations of the cell. Also, high performance communication protocols are 

implemented in order to allow PLC – Robot interaction, protocols that use both I/O 

lines and TCP/IP. 
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1. Introduction 
 

Traditional networked assembly structures have 

either a hybrid or heterarchical architecture. The first 

type allows data exchange and co-operation between 

lower-level (robot) controllers. In this architecture, a 

master initiates all the activities and then the 

subordinates cooperate to perform them. 

The second type of architecture is formed by a 

group of independent entities, usually called agents, 

that bid for orders based on their status and future 

workload (Morel et al., 2003). The master-slave 

relationship is dismissed and due to this decentralized 

control architecture, the agents have a complete local 

autonomy and the system is able to react promptly to 

any event such as: resource failure, new customer 

order etc (Rahimifard, 2004). Global batch 

optimization it is however improbable, because the 

execution of one order depends on the features of 

other orders, and also the system’s performance is 

unpredictable. 

In order to face resource break-downs, job shop 

assembly structures use networked robot controllers 

with multiple-LAN communication facilities 

allowing for production data saving and automatic re 

planning of batch production by help of failure and 

recovery management (Babiceanu et al., 2007).   

The manufacturing cell in which this project was 

implemented consists of six robots and a conveyor 

system. The robots are able to communicate with the 

PLC by the means of digital Input/Output lines and 

also by the means of Ethernet TCP/IP, being able to 

exchange information about their status and 

information regarding the manufacturing process of 

the pallet that is in the post. One Cartesian robot is 

used for inserting pallets in the system. The stoppers 

existent in the system can block or not the movement 

of the pallets on the conveyors, four of them being 

related to code-read sensor and other two to a 

read/write code sensor heads. Lifts have the task of 

transferring the pallets from one main conveyor belt 

to another or from the main conveyor loop to the 

robot conveyor belts that take the pallet to the 

working stations. The conveyor system is controlled 

by a PLC that enables all mechanical actions to be 

taken in the transport system (Lastra and Delamerm, 

2006). 

The PLC, as seen in Fig 1, is the core component 

of the entire cell. It has to take the data necessary for 

production from a planner. Then needs to control al 

the mechanical elements of the transport system, has 

to monitor and track pallets throughout the system by 

the means of an identification system and finally to 

communicate and give commands to the executing 

robots. 

Pallets enter the system having the possibility of 

being written with a unique magnetic-code for 

identification during the process. Each pallet, 

according to a previous planned production, stops at 

one or more working stations in order to have the 

operations done. Once all operations are complete, 

the pallet exits the system. The maximum number of 



 

pallets that can enter the system, for a batch, is 256, 

limited by the eight bits available for the magnetic 

code. For practical reasons, each pallet can support a 

total of 16 operations. An offline planner has to 

create an optimal schedule by maximizing the load of 

all available machines. 

 

 
Figure 1 – The main configuration 

 

When the products enter the system their memory 

capsule is written with their unique code for 

identification throughout the production of the batch. 

The products are then transported to the next working 

station by advancing on the main conveyor loop. At 

the five locations where they can be deviated there 

are sensors that identify the unique code, and 

according to the data received from the planner will 

take the actions for the deviation if necessary. 

The robots present in the manufacturing system 

should have a minimum of idle time, although in 

some particular cases some of the robots may not be 

involved. For achieving a maximum load, the 

conveyor system should never be blocked by any 

product that is waiting to be processed by a robot. If 

the transport system is not overloaded, the robot 

station can always be reached without waiting times 

and can always carry out a task. 

Some constraints are applied to the system: 

- at any time in the system there can be no 

more then 4 products. 

- the products coming out of a post have 

priority over the ones moving on the main 

conveyor. 

 

2. Solution design and PLC-based 

implementing of order holon  
 

2.1. Theoretical backgrounds 
When dealing with complex systems having a big 

number of input and output signals having to be 

controlled by a single PLC, a modern solution for 

software design must take into consideration the 

following issues: 

PLC must be chosen such as to support advanced 

software development kit, containing most of the 

standard programming languages for PLC’s, like 

Sequential Function Chart (SFC), Ladder Diagram 

(LD) or Structure Text (ST)  

The project should contain both graphical 

sequential programs  and cyclic programs (for actions 

needed to be performed at every PLC cycle) 

In most of the cases the project should contain 

several programs that will run simultaneously,  every 

program managing usually one action device (like 

relays, actuators and so on) or managing other 

activities like communication or timing management.  

The idea is not to use a centralized type of 

control, with one big “parent” program trying to 

implement all the actions, but to use several smaller 

programs, communicating between each other by 

global variables, each one taking care of a small part 

of the process. 

 

2.2. Project structure 
Following the guidelines previously described, a 

Bosch PLC together with Indralogic development 

software was used to accomplish the task. The 

project’s structure is shown in fig. 2. The project 

consists of 34 programs and 3 functions. All these 

can be divided into 9 categories: 

- Stopper 

- Lift 

- Transfer 

- Communication with Robot (I/O) 

- TCP data send to Robot 

- Write Code on Product 

- Time Keeper 

- User Interface 

- OPC Communication 

 

The “Stopper” type program has as objective the 

control of the mechanical device with the same name. 

Its function is to stop verify that if the next segment 

where the product needs to go is available or not, and 

activate or not the stopper. Also the program has to 

deviate the product towards the working station of a 

robot if necessary. 

The “Lift” type program has as objective the 

control of the mechanical device with the same name. 

Its function is to lift the product from the level of the 

main conveyor belts to the level of the lateral 

conveyors of each robot working post. Once the 

product has reached the working place the program 

signals the robot for the beginning of the necessary 

operation. 

The “Transfer” type program must control a 

double lift and the preceding stopper, its function 

being to transfer the product from one main conveyor 

belt to the other.  

The “Communication with Robot” type program 

implements a query protocol over the digital 



 

input/output lines for all the resource controllers and 

has to decide whether the controller is working 

properly and to communicate the status. 

The “TCP data send to Robot” type program has 

to send over the Ethernet a request for a job to a robot 

working station and must wait for the answer using 

the three functions for the TCP communication. 

The “Write Code on Product” type program has to 

write the unique identification code on the product 

memory capsule. The code is 8 bits long and in order 

for it to be valid the binary one’s complement must 

be written at the next two memory addresses. 

The “Time Keeper” type program must 

increment, with a step of 500ms, an integer variable 

that can communicate the time of production. As a 

second function, the program must reinitialize the 

system when a batch is finished.   

The “User Interface” type program has to control 

some of the graphical user interface elements, and to 

show the data in the system in a easy to understand 

format. 

The “OPC Communication” type program must 

control the data flow from the planner to the transport 

system. 

One of the issues in solving the transport system 

control problem was the entry. Due to the fact that 

products enter the system at different time stamps, 

and other may need to be transferred from one main 

conveyor belt to the other, some kind of interblocking 

must be implemented. The first solution one might 

take in account is a simple TAS (Test And Set). The 

product that needs to enter the system tests to see if 

the transfer is clear, signals the other products 

interested that the region has been occupied by 

setting a variable, and takes the necessary mechanical 

actions to make the product enter the system and 

when it has finished resets the variable, clearing the 

transfer. If by any chance the two products make the 

test in the same time then they are both going to 

occupy the transfer and a crash is possible. The 

solution is to prior test the sensors that detect the 

products and give priority to the one that needs to be 

transferred, because it must reach another working 

post. 

When one product is exiting a working post and 

another product that is on the main conveyor would 

like to cross to the next point, then a priority 

management must be implemented. It was decided 

that the exiting product has a higher priority then the 

products on the main conveyor loops. 

Another special issue is accessing the data 

structure. In order to have an easier access to the data 

it was decided to use an array that points to the next 

operation that the product must bear.  

The application has to convert the data coming 

from the planner that it is used (unlike a product 

driven approach (Petin et al., 2007)) into mechanical 

movements of its constituent elements and, the first 

step in solving the control problem is to choose the 

way in which this data is stored (Borangiu et al., 

2008). Having taken into account the way a product 

is developed it was decided to use this structure: 
TYPE datemasina : 

STRUCT 

 post:BYTE; (*number of the robot 

working post*) 

 operatie:BYTE;(* a code repre-

senting the operation done at this 

post*) 

 timpmin:WORD;(*the minimum amount 

of time necessary for completion *) 

 timpmax:WORD;(*maximum amount of 

time for completion of the operation*) 

 raport:BYTE;(*a small report 

about the result of the operation*) 

END_STRUCT 

END_TYPE 

This structure is repeated for each operation that 

the product has to pass and these structured compose 

an array named “sir_palete”. It was decided that 16 

structures are sufficient to completely describe a 

product and due to limitations of the system there can 

be no more then 256 products in one batch, these 

being the reasons why “sir_palete” was defined as an 

array of 256 by 16 structures of type “datemasina”. In 

order to have access to the data in the array one needs 

two indexes: the first index is the product number (0-

255) and the second is the number of operation (1-

16). The array named “sir_index” has a length of 256 

fields each of them being the operation index reached 

for the corresponding product. 

The data structure necessary for the information 

regarding the production is very large 256 (products) 

x 16 (operations) x 5 (elements in a structure) = 

20480 items and the limit imposed by the OPC 

standard is 15000 (1,5 Mb). For this reason it was 

decided to send one product at a time over the OPC, 

meaning 16 structures of 5 elements. For the control 

of the communication another two elements were 

necessary one that determines the kind of action 

(read/write) and another for synchronizing the 

planner and the PLC. 

post1: BYTE; 

 operatie1: BYTE; 

 timpmin1: WORD; 

 timpmax1: WORD; 

 raport1: BYTE; 

 

post2: BYTE; 

 operatie2: BYTE; 

 timpmin3: WORD; 

 timpmax3: WORD; 

 raport3: BYTE; 

………………….. 

post16: BYTE;  

 operatie16: BYTE; 

 timpmin16: WORD; 

 timpmax16: WORD; 

 raport16: BYTE; 

In order to write these in the PLC the planner 

must first write in the synchronization variable the 

code of the product for which the structures are valid 



 

and then give the write command. After 256 cycles 

the whole structure is written. Accompanying this 

data is also a string that shows the moment of time 

the product should enter the system. These are kept in 

an array “time_insertion”. 

 

 
Figure 2 – PLC Communication Interfaces 

 

3. PLC - Robot Communication 

 
The PLC is the key element of the cell because it 

is the central node that facilitates the communication 

between all holons involved and has the task of 

executing the transport operations involved. 

So, the communication between PLC and Robots 

is based on a dialog type model. According to this 

model, any communication protocol is initiated by 

the PLC, the Robot executes the orders and answers 

only in the mode depicted by the protocols. 

Any communication protocols that will be 

implemented will have three main tasks: 

• to monitor the robot’s online / offline status 

• to coordinate the robot task execution 

• to transmit the codes corresponding to the 

requested job and complementary execution 

report 

In order to implement such protocols, we have 

two communication interfaces at our disposal: I/O 

lines and TCP/IP (see Fig. 2). 

The I/O lines are direct links between each robot 

and the PLC. These are binary lines of industrial 

24VCC level, perfect for signaling different states 

and launching operations. On the other side, these 

lines have a high cost and are not very well suited to 

transmit data (through an eventual parallel protocol). 

The PLC and all the Robots are connected to a 

Switch through the TCP/IP interface, so that data 

packages can be sent / received directly, the TCP/IP 

protocol being in charge of correct package routing. 

Although we are using shielded cables and  the 

TCP/IP interfaces implemented in the PLC and Robot 

Controllers are of high quality, this protocol was not 

created to be of industrial use. So, this interface must 

be implemented with great care and only for data 

transmission. 

Considering the existing requirements and the 

available communication interfaces, two protocols 

will be implemented: 

• Ping – this protocol detects the online / 

offline status of the robots 

• Synchronization – this protocol implements 

the robot task execution 

 

3.1. Ping Protocol 

Since it is of the upmost importance to know 

which robots are online and when a robot changes it’s 

online / offline status, a protocol is implemented in 

order to provide this information (Barata and 

Camarinha, 2000). Because of the high redundancy 

required by this protocol, it uses only the I/O lines. 

The lines used by this protocol are: 

• PLC → Controller 

o Request Status 

� request the Controller to 

signal that he is online 

• Controller → PLC 

o Acknowledge Status 

� answer from the 

Controller 

 

3.2. Synchronization protocol 

This protocol must implement both PLC – Robot 

synchronization and job / complementary report 

codes transmission. So, it is necessary to use both I/O 

lines and TCP/IP interfaces: 

• PLC → Controller 

o Request_Job 

� signals the Controller that 

the PLC wants a job to be 

executed 

o Pallet_In_Position 

� signals the Controller that 

the PLC has brought the 

pallet in the working 

position and that job 

execution can be 

commenced 

• Controller → PLC 

o Ready 

� signals the PLC that a job 

is in execution 

o Job_Done 

� signals the PLC that the 

current job has been 

executed 

• Bidirectional (PLC ↔ Controller) 

o TCP/IP 



 

PLC transmits the job code, the Controller 

transmits job acceptance report and (if the job was 

accepted), transmits job execution report upon job 

completion. 

The protocol runs as follows: 

• the PLC detects that Ready is 0 so it sets 

Request_Job to 1 and transmits the job 

code over TCP/IP 

• the Controller reads the TCP/IP code and 

evaluates if it can execute the job; if he 

can execute the job then it will send the 

job acceptance code, if not it will send a 

job reject code; if the job is rejected then 

communication stops (we assume that the 

job is accepted) 

• the PLC brings the pallet in the working 

position and sets Pellet_In_Position to 1 

• the Controller sets Ready to 1 (the PLC 

sets Request_Job to 0) and begins 

executing the job 

• upon job execution, the Controller sets 

Job_Done to 1, Ready to 0, and sends the 

job completion report over TCP/IP 

• the PLC takes the pallet, sets 

Pellet_In_Position to 0, the Controller sets 

Job_Done to 0 and is ready to 

recommence the protocol 

The protocol’s evolution over time is also 

presented in Fig. 3. 

 

 
Fig. 3 – Communication signals 

 
The three time intervals presented in Fig.3 stand 

for: 

• T1 – interrogation time of part supply and/or 

workstation equipments in order to reach to 

a job acceptance / rejection conclusion 

• T2 – pallet transportation time from the 

main conveyor to the workstation  

• T3 – job execution time 

 

4. Multi-tasking control of a working 

station 
 

The robot controller features a multitasking 

industrial processor. Just like any other multitasking 

processor, this processor can execute a single task at 

any given time, but all tasks take alternatively control 

of the processor for very short periods of time, thus 

creating the impression that all tasks are running 

simultaneously. In order to decide which task 

deserves to run next on the processor, processing 

time is divided in a major time slices, each of these 

being 16ms long. Every major slice is divided in 16 

equal minor slices. Each system or user task has a 

priority (ranging from -1 (do not run) to 63 

(maximum)) assigned for each slice. At the beginning 

of each minor slice, the processor makes a list of 

ready to run tasks and assigns control over the 

processor to the task with the highest priority, when 

this task finishes running, priority is assigned to the 

next task and so on until all tasks run or the slice 

ends. 

Because (without an additional license) the 

number of user tasks is restricted to seven, we tried to 

use the least number of tasks possible in order to 

implement the communication protocols. This way, 

we leave the maximum number of free tasks; these 

tasks will be used for future development and for 

controlling other workstation equipment. 

 

 

 
Fig. 4 – Synchronization protocol 

 

An essential request is for the Controller is that 

the communication protocols are not interrupted by 

the robot failing various mounting operations. 



 

It results that we need to occupy a minimum of 

two tasks: one task for robot operations and one task 

for the communication protocols. 

From the controller’s point of view, the 

Synchronization protocol implies the steps presented 

in Fig. 4. Also, this protocol must be executed in 

parallel with the Ping protocol on the same task. In 

order to achieve this, a WHILE loop that repeats 

infinitely is used, this loop executes first the Ping and 

then the Synchronization protocol. In order to know 

the current position of the Synchronization protocol 

for each iteration, this position is stored in a variable. 

At each iteration the variable is read so that the 

correct stage of the protocol is run, if the protocol 

steps to the next stage, then the variable is updated, 

so that the next stage is run at the next iteration. 

 

5. Conclusions 
 

After a theoretical evaluation of the presented 

concepts the conclusion was that they fulfill the 

requirements needed for driving the manufacturing 

cell. 

Once implemented, it was concluded that the 

concepts presented successfully fulfilled the task of 

driving the production cell. 
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Fig. 5 – Production Started times 
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Fig. 6 – Production Finished times 

 

On implementing control of additional equipment 

such as vision software, automatic feeding of bulk 

parts, CNC control for drilling and milling, the 

capacity of the multitasking structure to execute 

additional tasks without interrupting the PLC 

communication protocols was observed. Also, the 

performance of using only two tasks (while leaving 

five free tasks) was noted. 

Once all the programming was done and the cell 

was fully functional, we programmed the PLC to 

report the start and finish time for each product, both 

the planned and the executed value. The results can 

be seen in Figs. 5 and 6. The conclusion is that, 

although there are differences for the planned and 

executed finish time (which will be addressed in 

future activities), they are small compared to the 

overall production time and that the system behaves 

as expected. 

 

6. Acknowledgments 
 

This work was partially supported from the scientific 

grant 146 / 2007 "Autonomous, intelligent robot-

vision platforms for product qualifying, sorting / 

processing / packaging and quality inspection with 

Service-Oriented, Feature-based HolonIc COntrol 

aRchitecture – SOFHICOR" of the National Agency 

of Scientific Research (ANCS). 

 

7. References 

 
Babiceanu, R.F. et al (2007). Framework for control 

of automated material-handling systems using 

holonic manufacturing approach, Int. J. Prod. 

Res., 42, 17, Taylor & Francis, 3551-3564, 

Barata, J. and L.M. Camarinha-Matos (2000). Shop 

floor re engineering to support agility in 

virtual enterprise environments, in E-Business 

and Virtual Enterprises, Kluwer Academic 

Publishers, London, 287-291. 

Borangiu, Th., Gilbert, G., Ivanescu, N. and A.  Rosu 

(2008). Holonic Robot Control for Job Shop 

Assembly by Dynamic Simulation, Proc. of 

the 16
th

 Mediterranean Conference on Control 

and Automation – MED'08, June 2008, 

Ajaccio. 

Lastra, J. and I. Delamerm (2006). Semantic web 

services in factory automation: Fundamental 

insights and research roadmap, IEEE Trans. 

on Industrial Informatics, 2, 1-11. 

Morel, G., Panetto, H., Zaremba, M., Mayer, F., 

2003. Manufacturing enterprise control and 

management system engineering: Rationales 

and open issues, IFAC Annual Reviews in 

Control. 

Pétin, J.-F. and G. Morel (2007). A product-driven 

reconfigurable control for shop floor systems, 

Studies in Informatics and Control, 16 

Rahimifard, S., 2004. Semi-heterarchical production 

planning structures in the support of team-

based manufacturing, International Journal of 

Production Research, 42, 17, September 1, 

3369-3382(14), Taylor and Francis Ltd. 


