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Abstract: This paper addresses an actual problem regarding complex industrial robot applications. Based 

on the fact that no CAD model for the processed parts is available, the application presented here consists 

in a 3D accurate path following, applicable in various robot tasks. Using a sensor-based 3D path learning 

procedure available in automatic or manual mode, the 6 d.o.f industrial robot will be able to reproduce in 

real-time the learned trajectory. Calibration and synchronization aspects are presented, and experimental 

results are provided and analyzed. 
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1. INTRODUCTION 

This article presents an approach for solving the 3D path 

following problem, illustrated in Fig. 1, where the CAD 

model of the part is not known. The robot arm has to move a 

tool tip along a 3D trajectory on a given workpiece, for 

performing various technological operations. The second 

goal is to present the possibility of using a laser-based profile 

scanner as a 3D vision sensor for precise robot guidance, 

since the accuracy of these devices is usually very good, 

reaching tens of microns or even micrometers. The laser 

sensor used for validating the methods presented here is 

capable of achieving a 30 µm standard deviation per point, 

which is comparable to the repeatability of the robot arm.  

 

Fig. 1. Sample 3D path following problem 
 

A typical solution for this problem is to extract the 3D path 

from the CAD model of the workpiece (Naveh, 2008;  

Norberto et.al., 2004; Sallinen et.al, 2003; Weihua et.al, 

2000). This approach, being the most used in industry, has a 

few drawbacks, which will be addressed in this paper. One of 

them comes from the lack of accuracy in the kinematics 

module of the current robotic arms when they work without 

additional information from sensors. This results in a 

mismatch between the real and ideal 3D descriptions of the 

path. Furthermore, the path following problem requires that 

the robot has to know the exact 3D position and orientation 

of each part. In other words, using the trajectory directly from 

CAD requires very good absolute accuracy of the robot arms, 

and also for the part fixtures and other mechanical elements. 

The lack of accuracy in robot kinematics may have different 

sources, such as machining tolerances in manufacturing the 

robot joints, errors in the electromechanical calibration, 

elasticity of the links (Lange et.al., 2008), the payload of the 

robot, or link dilatation due to heating of the robot actuators 

or neighborhood equipment (Poonyapak et.al, 2008). Even 

unexpected opperations, such as hitting the emergency stop 

while the robot is moving, may have an impact on the 

absolute accuracy of the robot.  

The robot manufacturers often specify the repeatability of the 

robot arm, which only measures the ability of the robot to 

return to a previously taught location, within the specified 

range. The robot arm used here is able to achieve a 

repeatability of 20 µm at constant temperature; however, the 

absolute accuracy is much worse (0.5 mm estimated). 

There are also situations when there is no 3D CAD model 

available, for example, when processing free-form objects 

like clay or wax models; a system for painting unknown parts 

without any CAD data is presented by (Pichler, 2002). 

2. PROPOSED SOLUTION 

The proposed system integrates a two vision technologies. 

A short range, triangulation-based laser profile scanner, 

which measures 2D profiles with good accuracy, mounted on 

the robot wrist, provides 3D vision capabilities. The main 



 

 

     

 

advantages of this sensor are the high accuracy and also the 

good robustness in changing lighting conditions, since the 

laser light is significantly more intense than ambient light. 

Moreover, since the laser is usually monochromatic, the 

tolerance for ambient light changes is increased using optical 

filters. However, the disadvantages are the slow speed, since 

the robot arm has to move the sensor in order to scan a 3D 

area, the amount of sensor data for processing can be very 

high, and also the difficulties with highly reflective or 

semitransparent materials. The eye safety hazard for the 

operator should be also considered. 

 

Fig. 2. The laser sensor looking at the edge of a black object. 
 

For industrial usage, it is required to make sure the robot is 

able to follow the 3D path for many similar parts which come 

on a conveyor belt, in different positions and orientations. If 

the parts are rotated around Z with arbitrary angles, and also 

have small rotations (e.g. less than 5 degrees) around X and 

Y, it is possible to use the 2D camera to perform a quick 

localization, which detects the XY position and rotation 

around Z with approximation, and afterwards, the 3D sensor, 

which is accurate but slow, will detect the exact 3D position 

and orientation of the part by scanning a few key areas and 

matching them to the reference data recorded for the sample 

part used for teaching. The matching procedure is performed 

using an efficient variation of Iterative Closest Point 

algorithm (Rusinkiewicz and Levoy, 2001) applied on point 

cloud data from the laser sensor. In this way, the hybrid 

vision solution compensates from the slow speed of the laser 

sensor, but exploits its accuracy in precise 3D localization. 

3. CALIBRATION ISSUES 

In this scenario, the robot learns a complex 3D path using the 

laser sensor, and then follows them using a physical tool. 

This can be achieved using two tool transformations (Fig. 3): 

• TL from the robot wrist to the reference frame of the 

laser sensor; 

• TT  from the robot wrist to the tip of the tool. 

The two transformations are determined using a calibration 

procedure.  

 

Fig. 3. The two tool transformations: from wrist to laser plane 

and from wrist to tool tip. All the elements are coupled 

using a mechanical fixture, not represented here. 
 

The TL transformation describes the position and orientation 

of the laser plane, with respect to the robot wrist. The data 

from the laser is a 2D set of points mapped to the laser plane. 

This data is extended into 3D on the YZ plane considering the 

X coordinate equal to 0. The coordinates from the sensor are 

transformed into the reference frame of the robot base by 

applying the TL matrix, combined with the robot direct 

kinematics transformation, which describes the instantaneous 

location of the robot at the time of measurement. 

Determining this transformation allows the robot to reach any 

location identified by the sensor, by changing the tool 

transformation. The measurements are performed using the 

TL transformation, and the motions are generated switching to 

the TT  tool transformation. 

The calibration process starts with aligning the laser 

reference frame  XLYLZL to the wrist reference frame XWYWZW. 

This procedure compensates for the misalignments of the 

fixture between the laser sensor and the robot wrist. A basic 

operation in the calibration process is the ball matching, 

where the laser sensor is swept along XL over a tooling ball. 

The point cloud obtained is segmented, and a sphere is fitted 

to the data in order to determine its center (Fig. 4).  

The sphere is fitted using the Riemann method, by projecting 

the data points on a 4D paraboloid, the result being a 

hyperplane. A similar method was presented in (Frühwirth 

et.al, 2003) for fitting a circle, and it was straightforward to 

extend the method for fitting the sphere. This method is 

advantageous because the hyperplane fitting problem is 

linear, and can be solved by well-known robust fitting 

methods based on weighted least squares (Fox, 2002). The 



 

 

     

 

robust fitting method is iterative and slower than the classical 

least squares fitting technique, but the results (center and 

radius) are not affected by outliers in data.  

 

Fig. 4. The ball matching process used for calibration. 
 

By placing the tooling ball in different position in the laser 

field of view, the orientation of the sensor plane can be 

determined with basic 3D geometry.  At least 3 positions are 

required for determining the plane equation. 

If the sphere is scanned while the sensor plane is not 

perpendicular to the sweeping direction, which is normal 

before performing the calibration, the 3D data will not 

represent a perfect sphere. The result will be a "stretched" 

sphere, which will result in large errors in the fitting 

procedure, and its center will not be determined exactly. For 

this reason, if the angle between the vectors XL and XT is too 

large, the calibration procedure has to be repeated until the 

orientation of the plane (yaw, pitch and roll) converges to the 

correct values.  

After the orientation has been determined, the center point is 

computed by attempting to keep the tooling ball with its 

center on the origin. The robot will detect the ball with 

different orientations; from each orientation, the origin of the 

sensor field of view will be in the same point (center of the 

tooling ball). The translation component of LT  is determined 

by solving a linear system, either exactly or using least 

squares, as described in (Hallenberg, 2007). 

The tool transformation for the physical tip can be computed 

using a similar method, either by manually positioning the tip 

to a fixed point, in different orientations (at least 3), or by 

using a calibration method specific to the particular tool type. 

        

Fig. 5. Tool tip calibration using two fixed cameras. 
 

The tool tip used in this experiemnt was calibrated using two 

cameras with PTZ (pan, tilt and zoom) capabilities (Fig. 5). 

The 2D vision system detects the tip of the tool by computing 

the intersection point of two edges, and the calibration 

software adjusts the robot so that the tool tip remains in the 

center of both images, while the tool is changing the 

orientation.  This method detects the tool offset (dz for tool 

length; dx and dy for the gripper eccentricity) by solving a 

linear system similar to the one used for the laser sensor.  

Using one fixed camera will detect the position changes in 

only two directions. It could be possible to estimate the third 

coordinate (depth) by detecting the scale factor of the tool, 

but this is not accurate. Two cameras offer 4 position 

variables, which is redundant, but they offer information 

about the position on all 3 degrees of freedom adjusted.  

The calibration begins by positioning manually the cameras, 

so the tool tip is visible in both images, like in Fig. 5. Then, 

the system will adjust the robot so that the tool tips are close 

to the center of image (exact match is not possible since the 

cameras are positioned with very low accuracy). The current 

robot location, and the position of the tool tips, are saved as 

reference positions. The next two locations are determined by 

changing the orientation from the reference robot location 

with a small amount (e.g. 5 degrees) in two different 

directions (e.g. X and Y). The amount of rotation should be 

small enough so that the tool tip remains in the image.  The 

robot will translate the tool tip towards the reference 

positions on the two images, and the final locations are saved.  

The small change in orientation allows the computation of a 

low-precision tool transformation, with an error of the order 

of magnitude of 1 mm. This will allow the robot to execute 

rotations around the tool tip (with approximation), and now 

the robot is able to change the orientation with high amounts 

(e.g. 45 degrees) while keeping the tool tip visible in both 

images from the cameras. The calibration process is repeated 

for various orientations: at every step, the robot changes the 

tool orientation, and then performs a translation until it 

reaches the reference position in both images. The calibration 

software records a set of N robot locations, all having the tool 

tip located at the same point in space, but with different 

orientation. The new set of robot locations can be rewritten as 

a linear system that can be solved using least squares, and the 

solution determines the final value for TT. 

The reader will observe that there is not need for any 

calibration for the fixed cameras; the software doesn't have to 

know anything about their location with respect to the robot. 

The only requirement is that Z axes of the two cameras shoud 

not be parallel; otherwise, the second camera will provide the 

same information as the first one. It is reccommended that the 

angle between the two cameras should be close to 90 degrees 

if possible, in order to maximize the pixel-to-mm ratio, which 

is the main factor which determines the accuracy of the 

method. Angle values between 45 and 135 degrees will also 

give good results.  

In this method, the tool orientation is assumed to be correct,  

since it is not a critical parameter for the 3D path following 

problem presented here. In the implementation, it was 

assumed that the tool had the same orientation as the laser 

sensor; however, this does not limit the generality of the 

method, and the sensor can have any orientation, different 

from the one used for the tool.  



 

 

     

 

4. TRAJECTORY LEARNING 

This section describes the process of learning a 3D path 

which follows a well defined feature on the workpiece. The 

feature can be a sharp edge, a filleted edge, or any shape that 

can be recognized and located in the 2D profile data from the 

laser sensor. In the example presented in Fig. 6, the user has 

taught the 2D vision engine to locate the rounded edge of the 

workpiece, which has to be followed by the robot. 

The learning process has two stages: 

a) Learning the coarse, low resolution trajectory 

(manually or automatically); 

b) Refining the accuracy by computing a fine, 

high resolution trajectory (automatically). 

 

Fig. 6. Interactive trajectory learning. The user is positioning 

the laser sensor, until the edge to be followed appears in 

the field of view, and is located automatically. 

 
 

 

Fig. 7. Automatic orientation of the sensor. The robot moves 

the sensor on a small linear segment in order to estimate 

the tangent vector at the desired 3D path, and then rotates 

the sensor plane, making it perpendicular to this vector. 
 

Coarse Learning - Manual mode 

The first step can be either interactive or automatic. In the 

interactive mode, the user has complete control of the 

learning process. The user positions manually the sensor by 

jogging the robot,  so that the desired edge becomes visible. 

The system helps the user by automatically detecting the 

edge position, and it can also adjust the orientation. 

For the orientation, the system will choose, by default, the 

current orientation of the sensor, or the user may specify a 

relative rotation. The system also offers a semi-automatic 

option for aligning the sensor in such a way that the laser 

plane is perpendicular to the trajectory, by computing the 

rotations around YL and ZL axes. The tangent to the trajectory 

is detected using a small scan pass (Fig. 7), by fitting a 

straight line to the positions of the feature located by the 2D 

vision engine. 

The rotation around XL is determined by the 2D vision engine 

when locating the tracked feature.  

Coarse Learning - Automatic mode 

The second method for learning a coarse 3D trajectory is 

automatic. The user positions the sensor at the starting point, 

learns the 2D edge model and specifies the search direction 

(which can be the positive or negative direction of XL) and 

the spacing between location. A higher spacing will allow the 

learning process exeute faster, but in this case it may have 

difficulties on regions with high curvature. For the example 

presented, a good choice for spacing in automatic mode is 10 

mm, while in manual mode, the distance between the points 

taught can be higher, e.g. 20 or 30 mm. 

The automatic mode will stop automatically when the edge is 

not recognized any more. If there is any ambiguity, i.e. two 

or more similar edges are detected in the same snapshot, the 

system either uses a heuristic to choose the most plausible 

solution, or asks the user which one should choose. 

The main advantage of the automatic mode is that it can run 

with very little user interaction (only at startup and in case of 

special situations), while the manual mode provides more 

flexibility and is advantageous when the task is more difficult 

and the user wants to have full control over the learning 

procedure. 

Fine Trajectory Learning - Automatic mode 

In this step, the coarse trajectory is followed using a 

continuous robot motion. During the motion, the tracked edge 

is always visible in the sensor field of view; however, the 

tracking error may be large. The sensor performs 

measurements while the robot is moving, and the data is 

collected on the PC, the sensor readings are matched to the 

instantaneous robot positions and sent to the 2D vision 

engine for edge detection and precise localization. The result 

of this step is a fine spaced sequence of robot locations, 

which represent an accurate description of the 3D path to be 

followed by the tool tip.  

 



 

 

     

 

5. SYNCHRONIZATION ISSUES 

The data from the vision (laser) sensor has to be matched 

with the instantaneous position of the robot in order to obtain 

consistent measurements expressed in the robot reference 

frame. There are three main approaches for this: 

a) Stop and look. Using this method, the measurements from 

the sensor are read only when the robot is not moving, and 

has reached its programmed destination. The method is the 

easiest to implement, does not need any synchronization 

signals between the vision sensor and the robot, but it is also 

the slowest, being limited at around 1 or 2 sensor readings 

per second. It is used currently in the coarse learning stage 

for the 3D trajectory, in automatic mode. 

b) Buffered synchronization. This method requires a trigger 

signal, usually sent from the vision sensor in the middle of 

the exposure period, to the robot. When receiving the signal, 

the robot latches its instantaneous position, and stores it in a 

buffer. The trigger signal may be reversed, so the robot 

activates the vision sensor. The data from the robot and the 

sensor is collected on the PC and processed at a later time. 

This method allows sensor readings to be taken while the 

robot is still in motion, and close-spaced measurements can 

be taken at much higher rates, e.g. 50 readings/second. 

However, there may be a significant delay from the of data 

acquisition until the data is processed by the PC. In the 

system used here, the bottleneck is the Ethernet link between 

the robot and the PC, and the delay is usually 0.2 – 0.3 

seconds, and could reach 1 second. The buffers ensure that 

the data is matched properly even when high delays occur in 

communication.  

This strategy is used in the fine learning stage for the 3D 

trajectory, which is automatic. If the delay is assumed to be 

less than a certain value, this method can be also used for the 

coarse learning stage, limiting the robot speed and using a 

predictor module. Should the delay exceed the assumed 

value, due to a transient perturbation in communication, the 

robot can pause the learning process and resume 

automatically, so the delays will not affect the result.  

The fine learning stage can be also implemented on a system 

which does not support this method of synchronization, using 

the stop and look approach; the only disadvantage will be a 

significant reduction in speed. 

c) Tight loop synchronization. This method is suitable for 

closed loop robot guidance using the vision sensor, and it 

involves small and predictable response times from both the 

vision engine and the control loop. Using this method will 

allow substantial speed up of the coarse learning stage; 

however, both the hardware and software requirements will 

be much higher. This method will also allow real-time path 

identification and precise tracking in only one pass. 

6. EXPERIMENTAL RESULTS 

The method for path teaching and following was validated 

using the same sensor to record the measurements while the 

robot was following the recorded path. Since in this 

application, the position of tool tip point is very important to 

be on the trajectory, but small changes in orientation are 

tolerable, the measure for the tracking error was chosen to be 

the distance between the ideal (recorded) path, and the actual 

tool center point. For the evaluation of the error, the deviation 

was measured with the same sensor, being used in passive 

mode, i.e. not having any influence on the path. The laser 

sensor was used in buffered synchronization mode. 

The first experiment shows the tracking errors achieved for a 

coarse trajectory, which was learned automatically, being 

defined by points spaced at 10 mm. Fig. 8a) shows that the 

coarse trajectory is reasonably good for the low curvature 

regions, while exhibiting higher errors for the middle portion 

with high curvature. In this graph, the robot was stopping to 

each taught location, and without waiting for the position 

errors to be nulled, accelerating towards the next location.  

 

Fig. 8. Tracking error for the coarse path, with two possible 

interpolation methods: a) Point-to-point motion using 

linear segments; b) Smooth continuous motion. 
 

Fig. 8b) represents the tracking error during a continuous 

path interpolation, which is obtained using a proprietary 

algorithm that does not actually reach the planned locations, 

but blends the motion segments achieving a behavior similar 

to B-Spline curves. The tracking error has a similar shape, 

with the difference that the error does not drop close to zero 

at every location taught, and this is normal because the robot 

does not actually reach these locations. 

From Fig. 8 it is possible to see that the tracking error is low 

enough in order to allow the system to automatically compute 

the fine 3D path, at high resolution. The refinement process is 

much more robust, and it may accept a coarse tracking error 

about 10 times higher, the main condition being that the 

tracked edge remains visible in the field of view of the sensor 

throughout the coarse trajectory tracking. 

Fig. 9 display the tracking error for the high-resolution path, 

followed with constant speed. The first test was executed 

with 10 mm/s at the tool tip, which was the same speed used 

for coarse trajectory tracking, and the second one was slowed 

down at 1 mm/s. In both cases, the tracking error is much 

smaller than in the coarse tracking case, the error signal is 

more similar to a white noise, and its main sources are the 

vibrations during the motion, the tracking errors from the 



 

 

     

 

robot servo loop, and also the estimation errors from the 2D 

vision engine which was used for processing the data from 

the laser sensor in order to locate the tracked edge. 

 

 

Fig. 9. Tracking error for the fine path, at different speeds for 

the tool tip: a) 10 mm/s; b) 1 mm/s. 
 

CONCLUSIONS AND FUTURE DEVELOPMENTS 

This paper presented a flexible and accurate method for 

teaching a 3D path along a visual feature of an existing 

object, using a laser sensor for robot guidance. The method 

was validated successfully, and there are many industrial 

tasks which can employ it, such as sealant dispensing, 

painting wireframe workpieces, welding and edge deburring.  

The laser sensor can be used only for teaching the path, and 

removed from the robot during the technological process. 

This is desirable when the process is likely to damage the 

sensor, for example, in welding applications. Since the sensor 

can be attached easily on the robot, on top of the existing end 

effector, and the calibration routine is quick and only requires 

a tooling ball visible its workspace, the same sensor can be 

used for teaching paths for many robots.  

The method may also be used for assesing the repeatability of 

industrial robots while following a continuous path. An 

important conclusion that can be drawn from this experiment 

is that a robot arm will not be able to achieve the repeatability 

indicated by the manufacturer in continouous motion, while it 

achieves it when it has to stop at some prescribed location.  

The calibration method used for the experiment provides also 

a framework for performing 3D vision guidance tasks using 

the robot, such as detecting accurate position and 3D 

orientation of parts for grasping and manipulation. The 

coordinates returned by the laser sensor can be expressed in 

the reference frame of the robot base, allowing it to build a 

3D description of its environment. A collision engine can use 

this information to prevent crashes between the robot and its 

surrounding equipments, and a path planning module can be 

used in order to generate autonomous motions for performing 

various tasks in unstructured environments.  

There are some tasks which require a precise orientation of 

the tool; for other tasks, the exact orientation is not critical. 

For the second category, a post-processing module can 

exploit the freedom of changing slightly the orientation of the 

tool from the taught values, along the path, in order to 

optimize certain criteria, for example, ensuring motion 

smoothness, or minimizing the speed of wrist joints while 

keeping the tool tip speed constant, thus reducing vibrations. 

Some tasks may allow arbitrary rotation of the tool around its 

Z axis; this becomes an extra degree of freedom which can 

also be used for singularity avoidance using a planning 

algorithm.  

Another goal of the project is improving the accuracy of the 

method. It is expected that smoothing the orientation 

component will reduce vibrations and also the tracking error, 

and it will also allow higher tracking speeds.  
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