
Semi-heterarchical distributed control of a holonic manufacturing cell

Theodor Borangiu*, Silviu Raileanu*, Andrei Rosu*, Mihai Parlea*, Silvia Anton*, Florin D. Anton*

*University Politehnica of Bucharest, Dept. of Automation and Applied Informatics, Bucharest, RO 060032,

ROMANIA (Tel: +40 21 402 9314; e-mail: borangiu@cimr.pub.ro).

Abstract: The paper describes a solution and implementing framework for the management of changes

which may occur in a holonic manufacturing system. This solution is part of the semi-heterarchical

control architecture developed for agile job shop assembly with intelligent robots-vision workstations.

Two categories of changes in the manufacturing system are considered: (i) changes occurring in resource

status at process level: resource breakdown, failure of (vision-based) in-line inspection operation, and

depletion of local robot storages; (ii) changes in production orders at business (ERP) level: rush orders.

All these situations trigger production plan update and rescheduling (redefine the list of Order Holons) by

pipelining CNP-type resource bidding at shop-floor horizon with global product scheduling at aggregate

batch horizon. Failure- and recovery management are developed as generic scenarios embedding the CNP

mechanism into production self-rescheduling. Implementing solutions and experimental results are

reported for a 6-station robot-vision assembly cell with twin-track closed-loop pallet transportation

system, Cartesian pallet feeding station, dual assembly component feeder with robot-vision tending and

product tracking RD/WR devices. Future developments will consider manufacturing integration at

enterprise level.

Keywords: holonic manufacturing, distributed control, reconfigurable systems, robotics, applied AI

1. INTRODUCTION

Some of the problems that discrete, repetitive manufacturing

industry faces are: resource availability (unexpected failure

or recovery of a resource and insertion or removal of

resources from the production process) and treatment of "rush

orders". To cope with these problems three concepts have

been developed in past years: (i) Flexible Manufacturing

Systems – FMS (Groover, 1987; Upton, 1992), (ii) Multi-

Agent – MAS and Holonic Manufacturing Systems – HMS

(Van Brussel et al., 1998; Leitao, 2006) and (iii) Product-

Driven Control for Manufacturing – PDCM (Petin et al.,

2006; Gouyon et al., 2007). The first, FMS, deals with the

physical composition of a manufacturing cell which has a

minimal degree of flexibility allowing easy reconfiguration

and also facing disturbances like resource breakdowns. The

second concept, HMS, deals with the control part of a

manufacturing cell, structuring it into basic building blocks

characterized by autonomy and cooperation. Manufacturing

tasks are solved by cooperation between these entities and to

the exterior the system is seen as a single entity, making it

easier to integrate such structures with the upper levels (ERP)

of an enterprise. The last concept, of "intelligent product",

assumes that a local intelligence is provided to the product

(moving on a pallets) integrated via RFID devices in an

Enhanced Information Management System (IMS-RFID)

which is used to retrieve process-, resource- and cell- data

for product routing.

The need of methods and tools to manage the process of

change addresses both the level of business reengineering

(including information technology infrastructures) and shop

floor reengineering (production processes are executing). A

particularly critical element in the shop floor reengineering

process is the control system. Current control / supervision

systems are not agile because any shop floor change requires

programming modifications, implying the need for qualified

programmers, usually not available in manufacturing SMEs.

Even small changes (e.g. rush orders) might affect the global

system architecture, which inevitably increases the

programming effort and the potential for side-effect errors.

The methodology used for shop-floor reengineering,

proposed in this paper, compensates for the deficiencies of

both hierarchical and heterarchical enterprise control

systems, and is based on new concepts for the design and

implementing of manufacturing control systems in the frame

of Holonic Manufacturing Execution Systems. Such concepts

attempt to model a manufacturing system based on some

analogies with other existing theoretical, natural or social

organization systems (Babiceanu et al., 2004; Barata, 2000;

Van Brussel et al., 1998). The agent-based and holonic

paradigms symbolize these new approaches; they deal with

the re-configurability in discrete, repetitive manufacturing by

introducing an adaptive production control system that

evolves dynamically between a more hierarchical (providing

global efficiency / optimality) and a more heterarchical (self-

adapting, fault-tolerant, agile) control architecture, based in

self-organization and learning capabilities embedded in

individual holons – information counterparts of resources,

processes and products (Bellifemine et al., 2001).

A generic distributed enterprise control architectures for shop

floor reengineering aims at accommodating the requirements:

• Modularity: production systems should be created by

composing modularized manufacturing components,

which become basic building blocks (developed on the

basis of the processes they are to cater for).

• Configuring rather than programming: the addition or

removal of any building block is done smoothly, with

minimal programming effort. The system composition

and its behaviour are established by configuring the

links among modules, using contractual mechanisms.

• High reusability: the building blocks should be reused

for as long as possible, and easily updated.

• Legacy systems migration: legacy and heterogeneous

controllers are accepted in the global architecture.

The proposed multi-agent control architecture supports the

reengineering process of shop floor control. This generic

MAS architecture uses contracts to govern the relationships

between coalition members (production agents), including

the reengineering process within the life cycle. The control

system architecture considers that manufacturing components

can be reused and plugged/unplugged with reduced

programming effort, supporting the plug& produce metaphor.

The Service Oriented Architecture (SOA) concept is used to

face the interoperability problems in the autonomous, re-

configurable architecture implemented as a HMES. Each

device controller encapsulates functions and services that its

associated physical device can perform). These services, that

can be modified, added or removed (e.g. a new product can

be handled by a robot after the aggregation of a new gripper),

are then exposed to be invoked by other device controllers.

The SOA for production management and control integrates

four areas: (1) Offer Request Management; (2) Management

of Client Orders; (3) Order- & Supply- Holon (OH, SH)

Management; (4) OH Execution & Tracking) – Fig. 1. The

first area is responsible for generating offers in response to

requests, based on: product knowledge (embedded in Product

Holons - PH), resource capabilities (from Resource Holon -

RH data), supply constraints and activities planning (CAPP).

Once received customer orders, they are interpreted,

validated and mapped into aggregate production orders

(APO) at ERP level. APO is the input to the Global

Production Scheduler (GPS) which, generates the lists of

Supply- (SH) and Order Holons (OH)

Fig. 1 – SOA integrates job-shop, team-based manufacturing with holonic robot control

The HMES implementing the MAS reference architecture

assumes that there is a similarity between the proposed

reengineering process and the formation of consortia

regulated by contracts in networked enterprise units.

The adoption of web services in the HMES holarchy will

satisfy the requirements (Jia and Fuchs, 2002):

• Resources can be encapsulated with a service provider

that acts like a bridge between the internal structure and

the exposed interface.

• Some services can be composed by other services,

creating a levelled structure of services (e.g. task-and

product-oriented learning of virtual cameras).

• Interoperability in the MAS is addressed by using

common communication semantics based on the use of

open protocols or web technologies (services).

• Fault-tolerant attribute is provided (anomalies that may

occur during the production processes, and

identification possible disturbances are handled).

The scientific contribution of the paper is the definition and

design of an implementing frame for a holonic control

architecture for agile job shop assembly with networked

intelligent robots, based on the dynamic simulation of

material processing and transportation. The holarchy is

defined considering the PROSA reference architecture

relative to which in-line vision-based quality control was

added by help of feature-based descriptions of materials.

The paper describes in detail the methodology used for the

management of changes – reallocating already scheduled

production orders (OHs) in a perturbed environment. The

control architecture is distributed, of semi-heterarchical type,

in which the organizational control is arranged on two levels,

referred to as global and local.

The global level assumes the responsibility for planning and

coordination of shop-floor level activities and the resolution

of conflicts between local objectives; the local level has

autonomy over the planning and control of internal activities

(e.g. the robot assembly team).

There is an entity placed on a superior decisional level – the

Global Production Scheduler (GPS) – which sends aggregate

product orders, optimally scheduled – Order Holons (OH), to

entities on inferior levels – Device (e.g. Robot, Machine)

Controller, cooperating to accomplish the orders. The

schedules delivered by the GPS are not imposed to any of the

individual resources; instead, they are only recommended to

the decision-making entities – the Order Holons. These

recommendations are followed as long as failures or changes

do not occur in the system (hierarchical operating mode);

they will be ignored at failure/change and recovery moments,

being replaced by alternate schedules created from resource

(robot) offers mutually agreed by cooperation mechanism

(heterarchical operating mode). The holonic manufacturing

control automatically switches between these two modes.

The holonic control strategy follows the key features of the

PROSA reference architecture (Van Brussel et al., 1998;

Valkaenars, 1994), implemented as an extended HMES:

• Automatic switching between hierarchical (efficient /

optimal use of resources) and heterarchical (agility to

order changes, e.g. rush orders, and fault tolerance to

resource breakdowns) production control modes.

• Automatic planning and execution via Supply Holons

(SH) of part supply; automatic generation of self-supply

tasks upon detecting local storage depletion.

• In-line vision-based part qualification and inspection of

products in user-definable execution stages.

• Robotized processing (e.g. assembling, machine

tending, fastening, assembling) under visual guidance

2. SYSTEM ARCHITECTURE

As suggested by the PROSA abstract, the manufacturing

system was broken down into three basic holons:

1. Resource Holons (RH): they hold information about cell

resources. Any resource may have a number of sub-

resources, which are also seen as holons.

2. Product Holons (PH): they hold information about a

product type. The product information is more than a

theoretical description of the physical counterpart but not

directly associated with one individual physical item,

unlike the resource holon (Leitao and Restivo, 2006).

3. Order Holons (OH): represent all information necessary

to produce one item of a product type. This holon is

directly associated with the emerging item, it holds

information about its status. OHs are created by the GPS

from an Aggregate List of Product Orders generated at

ERP level. Alternate OH are created in response to

changes in product batches (rush orders) and failures

(resource breakdown, storage depletion).

A holon designs a class containing data fields and

functionalities. Beside the information part, holons possess a

physical part too, like the product_on_pallet for OH.

The way in which different types of holons communicate and

the type of information they exchange depends on the

functionalities imposed to the manufacturing cell. Fig. 2

shows the interaction diagram of the basic holon classes as

they were implemented into software to solve scheduling and

failure management problems. A HolonManager hosts all

holons and coordinates the data exchange.

The HolonManager entity is responsible with the planning

(by help of Expertise Holons – EH) and management of OH

as Staff Holons in the PROSA architecture do; in addition, it

externally interfaces the application (maps the OH list in

standard PLC files and tracks OH execution).

A basic process plan is generated initially, upon receiving

from the ERP level an APO or raw orders, based on: (i)

Knowledge-based scheduling (KBS, inspired by Kusiak,

1990) or (ii) Resolved Scheduling Rate Planner (RSRP,

Borangiu, 2008). This basic process plan is computed at the

global horizon of P products of the aggregate batches, and

consists from a list of Supply Holons responsible for feeding

the local robot storages and a list of Order Holons driving

product execution. The OH list is mapped into PLC files for

batch execution.

Fig. 2. Basic holon cooperation and communication structure in the semi-heterarchical control architecture

Alternative process plans, triggered by resource failure, local

storage depletion or occurrence of rush orders, are pipelined

automatically: (a) at the horizon of Ep products in course of

execution in the system, based on heterarchical contract

negotiation schemes (CNP-type) between valid resources; (b)

at the global horizon of ET ppP −− remaining products,

=Tp number of terminated products, based on hierarchical

GSP. Two categories of changes are considered:

1. Changes occurring in the resource status at shop floor

level: (i) breakdown of one resource (e.g. robot, machine

tool); (ii) failure of one inspection operation (e.g. visual

measurement of a component/assembly); (iii) depletion of

one robot workstation storage.

2. Changes occurring in production orders, i.e. the system

receives a rush order as a new batch request (APO).

All these situations trigger a fail-safe mechanism which

manages the changes, providing respectively fault-tolerance

at critical events in the first category, and agility in reacting

(via ERP) to high-priority batch orders. A FailureManager

was created for managing changes in resource status. A

virtually identical counterpart, the RecoveryManager, takes

care of the complementary event (resource recovery).

Upon monitoring the processing resources (robots), their

status may be at run time: available – the resource can

process products; failed – the resource doesn’t respond to the

interrogation of the PLC (the entity responsible for Order

Holon execution), and consequently cannot be used in

production; no stock – similar to failed but handled different

(the resource cannot be used in production during re-supply,

but it does respond to PLC status interrogations.

There are two types of information exchanges between the

PLC (master over OH execution) and the resource controllers

for estimation of their status during production execution:

• Background interrogation: periodic polling of I/O lines

RQST_STATUS and ACK_STATUS between the PLC –

OH coordinator and the Resource Controllers (robot,

machine tool, ASRS).

• Ultimate interrogation: just before taking the decision to

direct a pallet (already scheduled to a robot station) to the

corresponding robot workplace, a TCP/IP communication

between the PLC and the robot controller takes place

(according to the protocol in Fig. 3). This communication

validates the execution of the current OH operation on the

particular resource (robot).

Fig. 3. Communication protocol between the PLC and a

Robot Controller authorizing an OH operation execution

Resource Holons
Product Holons

(operation, tool,

material, storage)

Order Holons

CNP

Customer

Orders

PLC Files

Current status
Available operating modes,

models, programs

Job scheduling
Job re-scheduling

Batch (OH set) execution,

Product traceability

Transfer for execution

(work-to-do)

Describe

work-to-plan

Announce

"work-to-do"

Announce

capacity

Provide
resource

schedule

Product Database

Resource

failure /

recovery
Storage

depletion

Expertise Holons

Order change
Due data, rush tag

Robot controllers,

Machine CNC,

Conveyor devices

In this protocol, READY is a signal generated by the Robot

Controller indicating the idle or busy state of the resource

(robot). The PLC requests through its digital output line

RQST-JOB to use the robot for an assigned OH operation

upon the product placed on the pallet waiting to enter the

robot workstation. D1 details the scheduled job via the TCP

PLC transmission line from the PLC to the Robot Controller.

The Robot Controller indicates in D2 job acceptance or

denial via the TCP Robot transmission line.

When the job is accepted, the pallet is directed towards the

robot's workplace, where its arrival is signalled to the Robot

Controller by the Pal In Pos digital output signal of the PLC.

Job Done is a signal indicating job termination (D3 details

the way the job terminated: success, failure). T1 is the

decision time on job acceptance (storage evaluation etc), T2

is the transport time to move the pallet from the main

conveyor loop to the robot workplace, and T3 is the time for

job execution.

Upon periodic interrogation, the entity coordinating OH

execution – the PLC – checks the status of all resources,

which acknowledge being available or failed. The ultimate

interrogation checks only the state of one resource – the one

for which a current operation of an OH was scheduled;

during this exchange of information, the PLC is informed

whether the resource is available, failed or valid yet unable to

execute the requested OH operation upon the product due to

components missing in its storage (no stock status).

3. MANAGING RESOURCE BREAKDOWN/RECOVERY

When the failure status of a resource is detected, the

FailureManager is called, executing a number of actions

according to the procedure given below (Fig. 4):

1. Stop immediately the transitions of executing OH, i.e. the

circulation of products_on_pallets in the cell; production

continues at the remaining valid resources (robots).

2. Update the resource holons with the new states of all

robots.

3. Read Order Holons currently in execution in the cell.

4. Evaluate all products if they can still be finished, by

checking the status of each planned OH:

• if the OH was in the failing robot station, mark it as

failed and evacuate its product_on_pallet;

• if the OH is in the system, but cannot be completed

anymore because the failed resource was critical for

this product, mark it as failed and evacuate its

product_on_pallet;

• if the OH is not yet in the system, but cannot be

completed due to the failure of the resource which is

critical for that product, mark it as failed (en .is the

total number of such OH).

5. For the remaining failwipwip nnn −=
' schedulable OH in

the system, locate their products_on_pallets and

initialize the transport simulation associated to the

current operational configuration of the system.

Authorise the
'
wipn OH to launch Contract Net Protocol-

based negotiations (HBM) with the remaining available

Resource Holons for re-scheduling of their associated

operations. wipn are the OH currently introduced in the

system (in the present implementation, 5≤wipn), and

failn is the total number of OH currently in the system,

which cannot be finished because they need the failed

resource at some moment during their execution

6. Run the Global Production Scheduling algorithm for the

ewipfin nnnN −−− OH not yet introduced in the

system, where a number of N OH was scheduled in total

and finn OH were finished.

7. Delete the orders stored on the system and transfer the

updated orders to the system

8. Resume product_on_pallet transfer within the transport

system (allow OH transitions in the system).

It might happen that a failed robot is repaired before the

current manufacturing cycle is finished. In this recovery

case, the cell regained the ability to run at full capacity but

the lined up orders do not make use of this fact, as they are

managed by the system in a degraded mode.

The procedure of rescheduling back the Order Holons is

virtually identical to the one used in case of failure; the main

deference is that none of the products_on_pallets being

currently processed need to be evacuated since there is no

reason to assume they could not be completed. Any orders

that were marked as failed due to temporary resource

unavailability are now untagged and included in the APO list

for scheduling at the horizon of the rest of batch, as they may

be manufactured again due to resource recovery (Lastra and

Delamerm, 2006).

4. MANAGEMENT OF RUSH ORDERS

The system is agile to changes occurring in production orders

too, i.e. manages rush orders received as new batch requests

from the ERP level while executing an already scheduled

batch production (a sequence of OH).

Because of the similarity between a task run on a processor

and a batch of orders executed in a manufacturing cell (both

are pre-emptive, independent of other tasks or batches, have a

release, a delivery date and an fixed or limited interval in

which they are processed), the Earliest Deadline First (EDF)

procedure was used to schedule new batches (rush orders) for

the robotized assembly cell.

EDF is a dynamic scheduling algorithm generally used in

real-time operating systems for scheduling periodic tasks on

resources, e.g. processors (Sha et al., 2004). It works by

assigning a unique priority to each task, the priority being

inversely proportional to its absolute deadline and then

placing the task in an ordered queue. Whenever a scheduling

event occurs the queue is searched for the task closest to its

deadline term to be met (Borangiu et al., 2008a; Barata,

2005; Rahimifard,2004).

Fig.4. Dynamic OH rescheduling at resource failure/storage depletion with embedded CNP job negotiation (monex)

A feasibility test for the analysis of EDF scheduling was

presented in (Liu and Layland, 1973); the test shows that if:

(1) all tasks are periodic, independent, fully pre-emptive; (2)

all tasks are released at the beginning of the period and have

deadlines equal to their period; (3) all tasks have a fixed

computation time or a fixed upper bound which is less or

equal to their period; (4) no task can voluntarily stop itself;

(5) all overheads are assumed to be 0; (6) there is only one

processor, then a set of n periodic tasks can be scheduled if

 timecycle,timeexecution , tasksofnumber ,1

1

===≤∑
=

ii

n

i i

i
TCn

T

C

or, in other words, if the utilization of the processor

(resource) is less than 100%.

A batch or Aggregate Product Order list (APO) is composed

of raw orders (list of products to be manufactured); this is

why two different batches are independent. Nevertheless,

there is a difference between a task and a batch of products: a

task is periodic while a batch is generally a periodic. This

means that instead of testing the feasibility of assigning

batches to the production system considering the equation

above, one can use the following test: "for an ordered queue

(based on delivery date) of n batches with computed

makespan, if ni

i

j

ij ,1,atedelivery_dmakespan

1

=≤∑
=

, then

the batches can be assigned to the production cell using EDF

without passing over the delivery dates".

This EDF approach is used to insert rush orders in a

production already scheduled by the GPS; the steps below are

carried out for inserting a new production batch during the

execution of a previously created sequence of OH (Fig. 5):

0. Compute the remaining time for finishing the rest of the

current batch (if necessary).

1. Insert new production data: product types, quantities,

delivery dates.

2. Separate products according to their delivery date.

3. Form the entities "production batches" (a production

batch is composed of all the products having the same

delivery date).

4. Generate raw orders in production batches (APO lists).

5. Schedule the raw orders (using a GPS algorithm, e.g.

KBS or Step Scheduler), compute the makespan and test

if the inserted batch can be done (the makespan is

smaller than the time interval to delivery date if

production starts now).

Fig. 5. Add rush order diagram and integration with dynamic job re-scheduling based on CNP negotiation (monex)

6. Analyse the possibility of allocating batches to the cell

using the EDF and second equation for feasibility test.

7. Allocate the batches on the production system according

to the EDF procedure.

8. Resume execution process with new scheduled OH.

In this mechanism for managing the changes in production

orders, an inserted batch is a batch that arrives while another

one is in execution. A monitored batch is one whose orders

are scheduled and assigned to the cell (it has a priority and is

waiting to enter execution). A current batch is that executing.

The capability of adding rush orders to production needs a

new entity, the batch. Thus, job scheduling is done at batch

level (all orders with the same delivery date are scheduled

together) and then batches are assigned to the cell according

to their delivery date, using the EDF procedure (Table 1).

Table 1. The minimal structure of a batch holon

Type Name Description

string batch_name Name or index of the batch

Date delivery_date Delivery date of the orders

Product[] requested_products Vector containing the products

to be executed

Resource[] used_resources Vector containing the

configuration used for current

batch planning

Order[] orders_to_execute Vector containing the entities

OH already scheduled using a

specified cell structure (defined

by the variable used_resources)

int makespan Time interval needed for the

current batch to be executed if

started now and not interrupted

(it is a result of scheduling)

Because batch execution is interruptible (pre-emptive

system), new batches (rush orders) can be introduced exactly

at the moment of their arrival. The insertion process is

triggered by the arrival of a "new order" event; a real-time

acceptance response can be provided (via the ERP level) to

the customer if the rush order can be executed at requested

delivery date.

5. CONCLUSIONS

The distributed control solution was implemented, tested and

validated on a real manufacturing structure with 6 industrial

assembly robots and 4-axis CNC milling machines, using the

holonic approach. This holonic platform was finalized during

2008 in the Laboratory of Robotics and Artificial Intelligence

of the Department of Automation and Industrial Informatics

within the University Politehnica of Bucharest (Fig.6).

Fig. 6. Layout of the manufacturing cell with holonic control

The control is structure is fully operational, both in the

normal hierarchical mode and upon switching automatically

to the heterarchical one in response to discussed changes.

Production scheduling at batch level was implemented and

tested using the EDF method; Fig. 7 shows the results

obtained when two new batch orders T24 = (4, 17) and T25 =

(1, 3) are received at time T = 2 after the execution of three

planned batches: T11 = (2, 18), T12 = (3, 20), T13 = (7, 11)

started. Here Tij = (m, dd) signifies the number (j) of the

batch for which execution was requested at date i; the batch

has the makespan m and due delivery date, dd (both

expressed in time units).

Fig .7. Inserting new batches among executing ones with the EDF

algorithm.

ACKNOWLEDGMENTS

This work was partially supported from the scientific grant

146 / 2007 "Autonomous, intelligent robot-vision platforms

for product qualifying, sorting / processing / packaging and

quality inspection with Service-Oriented, Feature-based

HolonIc Control aRchitecture – SOFHICOR" of the National

Agency of Scientific Research (ANCS).

REFERENCES

Babiceanu, R.F. et al (2004). Framework for control of

automated material-handling systems using holonic

manufacturing approach, Int. J. Prod. Res., 42, 17, Taylor

& Francis, 3551-3564,

Barata, J. and L.M. Camarinha-Matos (2000), Shop floor re

engineering to support agility in virtual enterprise

environments, in E-Business and Virtual Enterprises,

Kluwer Academic Publishers, London, 287-291.

Barata, J. (2005), Coalition Based Approach for Shop Floor

Agility, Orion Edition, Amadora-Lisbon

Bellifemine, F., Poggi, A. and G. Rimassa (2001),

Developing Multi-Agent Systems with FIPA-Compliant

Agent Framework, Software Practice and Experience, 31,

2, 103-128.

Borangiu, Th., Gilbert, G., Ivanescu, N. and A. Rosu (2008).

Holonic Robot Control for Job Shop Assembly by

Dynamic Simulation, Proc. of the 16th Mediterranean

Conference on Control and Automation – MED'08, June

2008, Ajaccio.

Borangiu, Th., Ivanescu, N., Raileanu, S. and A. Rosu

(2008a), Vision-guided Part Feeding in a Holonic

Manufacturing System, Proc. of 16
th
 Workshop on

Robotics in Alpe-Adria-Danube Region RAAD'09, Ancona,

51-56

Cheng, F.-T., Chang, C.-F. and S.-L. Wu (2006),

Development of Holonic Manufacturing Execution

Systems Industrial Robotics: Theory, Modelling and

Control, and Control, Advanced Robotics Systems,

Vienna, Pro Literatur Verlag Robert Mayer-Scholz.

Gouyon, D., Pétin, J.-F. and G. Morel (2007), A product-

driven reconfigurable control for shop floor systems,

Studies in Informatics and Control, 16.

Groover, M. (1987). Automation, Production Systems and

CIM. Prentice-Hall.

Higuera, A.G. and A.C. Montalvo (2007), RFID-enhanced

multi-agent based control for a machining system, Int. J.

on Flexible Manufacturing Systems, 19, Springer, 41-61.

Jia, H.Z. and H. Fuh (2002), Web-based multi-functional

scheduling system for a distributed manufacturing system,

Concurrent Engineering, 10, 1, 27-39.

Kusiak, A. (1990). Intelligent Manufacturing Systems,

Prentice Hall, Englewood Cliffs, New York.

Lastra, J. and I. Delamerm (2006). Semantic web services in

factory automation: Fundamental insights and research

roadmap, IEEE Trans. on Industrial Informatics, 2, 1-11.

Leitao, P. and F. Restivo (2006). ADACOR: A holonic

architecture for agile and adaptive manufacturing control,

Computers in Industry, 57, 121-130.

Liu, C.L. and J.W. Layland (1973). Scheduling algorithms

for multiprogramming in a hard real-time environment.

Journal of ACM , 20, 46-61.

Lusch, R.F., Vargo, S.L. and G. Wessels (2008), Towards a

conceptual foundation for service science: Contributions

from service-dominant logic, IBM Systems Journal, 47, 1.

Marchand, H., Bournai, P., Le Borgne, M. and P. Le Guernic

(2000), Synthesis of discrete-event controllers based on the

signal environment, Discrete Event Dynamic Systems:

Theory and Applications, 10, 325-346.

Pétin, J.-F., Gouyon, D. and G. Morel (2007), Supervisory

synthesis for product-driven automation and its application

to a flexible manufacturing cell, Control Engineering

Practice, 15, 595-614.

Rahimifard, S. (2004), Semi-heterarchical product planning

structures in the support of team-based manufacturing, Int.

J. Prod. Res., 42, 3369-82

Sha, L. et al. (2004). Real Time Scheduling Theory: A

Historical Perspective, Real-Time Systems, 28, 101-155.

Upton, D. (1992).Flexible Structure for Computer Controlled

Manufacturing System. Manufacturing Review, 5, 58–74.

Valckenaers, P., Van Brussel, H., Bongaerts, L. and J. Wyns

(1994). Results of the holonic control system benchmark at

the KULeuven, In: Proceedings of the CIMAT Conference

(CIM and Automation Technology), 128-133. Rensselaer

Polytechnic Institute, Troy, New York.

Van Brussel, H, Wyns, J., Valckenaers, P., Bongaerts, L. and

P. Peeters (1998). Reference Architecture for Holonic

Manufacturing Systems: PROSA, Computers in Industry,

Special Issue on Intelligent Manufacturing Systems, 37, 3,

255 – 276.

