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Abstract: The paper describes a solution and implementing framework for the management of changes 

which may occur in a holonic manufacturing system. This solution is part of the semi-heterarchical 

control architecture developed for agile job shop assembly with intelligent robots-vision workstations. 

Two categories of changes in the manufacturing system are considered: (i) changes occurring in resource 

status at process level: resource breakdown, failure of (vision-based) in-line inspection operation, and 

depletion of local robot storages; (ii) changes in production orders at business (ERP) level: rush orders. 

All these situations trigger production plan update and rescheduling (redefine the list of Order Holons) by 

pipelining CNP-type resource bidding at shop-floor horizon with global product scheduling at aggregate 

batch horizon. Failure- and recovery management are developed as generic scenarios embedding the CNP 

mechanism into production self-rescheduling. Implementing solutions and experimental results are 

reported for a 6-station robot-vision assembly cell with twin-track closed-loop pallet transportation 

system, Cartesian pallet feeding station, dual assembly component feeder with robot-vision tending and 

product tracking RD/WR devices. Future developments will consider manufacturing integration at 

enterprise level.                   
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1. INTRODUCTION 

Some of the problems that discrete, repetitive manufacturing 

industry faces are: resource availability (unexpected failure 

or recovery of a resource and insertion or removal of 

resources from the production process) and treatment of "rush 

orders". To cope with these problems three concepts have 

been developed in past years: (i) Flexible Manufacturing 

Systems – FMS (Groover, 1987; Upton, 1992), (ii) Multi-

Agent – MAS and Holonic Manufacturing Systems – HMS 

(Van Brussel et al., 1998; Leitao, 2006) and (iii) Product-

Driven Control for Manufacturing – PDCM (Petin et al., 

2006; Gouyon et al., 2007). The first, FMS, deals with the 

physical composition of a manufacturing cell which has a 

minimal degree of flexibility allowing easy reconfiguration 

and also facing disturbances like resource breakdowns. The 

second concept, HMS, deals with the control part of a 

manufacturing cell, structuring it into basic building blocks 

characterized by autonomy and cooperation. Manufacturing 

tasks are solved by cooperation between these entities and to 

the exterior the system is seen as a single entity, making it 

easier to integrate such structures with the upper levels (ERP) 

of an enterprise. The last concept, of "intelligent product", 

assumes that a local intelligence is provided to the product 

(moving on a pallets) integrated via RFID devices in an 

Enhanced Information Management System (IMS-RFID) 

which is used to retrieve process-, resource-  and cell- data 

for product routing. 

The need of methods and tools to manage the process of 

change addresses both the level of business reengineering 

(including information technology infrastructures) and shop 

floor reengineering (production processes are executing). A 

particularly critical element in the shop floor reengineering 

process is the control system. Current control / supervision 

systems are not agile because any shop floor change requires 

programming modifications, implying the need for qualified 

programmers, usually not available in manufacturing SMEs. 

Even small changes (e.g. rush orders) might affect the global 

system architecture, which inevitably increases the 

programming effort and the potential for side-effect errors. 

The methodology used for shop-floor reengineering, 

proposed in this paper, compensates for the deficiencies of 

both hierarchical and heterarchical enterprise control 

systems, and is based on new concepts for the design and 

implementing of manufacturing control systems in the frame 

of Holonic Manufacturing Execution Systems. Such concepts 

attempt to model a manufacturing system based on some 

analogies with other existing theoretical, natural or social 

organization systems (Babiceanu et al., 2004; Barata, 2000; 

Van Brussel et al., 1998). The agent-based and holonic 

paradigms symbolize these new approaches; they deal with 

the re-configurability in discrete, repetitive manufacturing by 

introducing an adaptive production control system that 

evolves dynamically between a more hierarchical (providing 

global efficiency / optimality) and a more heterarchical (self-

adapting, fault-tolerant, agile) control architecture, based in 

self-organization and learning capabilities embedded in 

individual holons – information counterparts of resources, 

processes and products (Bellifemine et al., 2001).   

A generic distributed enterprise control architectures for shop 

floor reengineering aims at accommodating the requirements: 



• Modularity: production systems should be created by 

composing modularized manufacturing components, 

which become basic building blocks (developed on the 

basis of the processes they are to cater for). 

• Configuring rather than programming: the addition or 

removal of any building block is done smoothly, with 

minimal programming effort. The system composition 

and its behaviour are established by configuring the 

links among modules, using contractual mechanisms. 

• High reusability: the building blocks should be reused 

for as long as possible, and easily updated. 

• Legacy systems migration: legacy and heterogeneous 

controllers are accepted in the global architecture.  

The proposed multi-agent control architecture supports the 

reengineering process of shop floor control. This generic 

MAS architecture uses contracts to govern the relationships 

between coalition members (production agents), including 

the reengineering process within the life cycle. The control 

system architecture considers that manufacturing components 

can be reused and plugged/unplugged with reduced 

programming effort, supporting the plug& produce metaphor. 

The Service Oriented Architecture (SOA) concept is used to 

face the interoperability problems in the autonomous, re-

configurable architecture implemented as a HMES. Each 

device controller encapsulates functions and services that its 

associated physical device can perform). These services, that 

can be modified, added or removed (e.g. a new product can 

be handled by a robot after the aggregation of a new gripper), 

are then exposed to be invoked by other device controllers.  

The SOA for production management and control integrates 

four areas: (1) Offer Request Management; (2) Management 

of Client Orders; (3) Order- & Supply- Holon (OH, SH) 

Management; (4) OH Execution & Tracking) – Fig. 1. The 

first area is responsible for generating offers in response to 

requests, based on: product knowledge (embedded in Product 

Holons - PH), resource capabilities (from Resource Holon - 

RH data), supply constraints and activities planning (CAPP). 

Once received customer orders, they are interpreted, 

validated and mapped into aggregate production orders 

(APO) at ERP level. APO is the input to the Global 

Production Scheduler (GPS) which, generates the lists of 

Supply- (SH) and Order Holons (OH) 

 

 

Fig. 1 – SOA integrates job-shop, team-based manufacturing with holonic robot control 



The HMES implementing the MAS reference architecture 

assumes that there is a similarity between the proposed 

reengineering process and the formation of consortia 

regulated by contracts in networked enterprise units.  

The adoption of web services in the HMES holarchy will 

satisfy the requirements (Jia and Fuchs, 2002): 

• Resources can be encapsulated with a service provider 

that acts like a bridge between the internal structure and 

the exposed interface. 

• Some services can be composed by other services, 

creating a levelled structure of services (e.g. task-and 

product-oriented learning of virtual cameras). 

• Interoperability in the MAS is addressed by using 

common communication semantics based on the use of 

open protocols or web technologies (services). 

• Fault-tolerant attribute is provided (anomalies that may 

occur during the production processes, and 

identification possible disturbances are handled). 

The scientific contribution of the paper is the definition and 

design of an implementing frame for a holonic control 

architecture for agile job shop assembly with networked 

intelligent robots, based on the dynamic simulation of 

material processing and transportation. The holarchy is 

defined considering the PROSA reference architecture 

relative to which in-line vision-based quality control was 

added by help of feature-based descriptions of materials. 

The paper describes in detail the methodology used for the 

management of changes – reallocating already scheduled 

production orders (OHs) in a perturbed environment. The 

control architecture is distributed, of semi-heterarchical type, 

in which the organizational control is arranged on two levels, 

referred to as global and local.  

The global level assumes the responsibility for planning and 

coordination of shop-floor level activities and the resolution 

of conflicts between local objectives; the local level has 

autonomy over the planning and control of internal activities 

(e.g. the robot assembly team). 

There is an entity placed on a superior decisional level – the 

Global Production Scheduler (GPS) – which sends aggregate 

product orders, optimally scheduled – Order Holons (OH), to 

entities on inferior levels – Device (e.g. Robot, Machine) 

Controller, cooperating to accomplish the orders.  The 

schedules delivered by the GPS are not imposed to any of the 

individual resources; instead, they are only recommended to 

the decision-making entities – the Order Holons. These 

recommendations are followed as long as failures or changes 

do not occur in the system (hierarchical operating mode); 

they will be ignored at failure/change and recovery moments, 

being replaced by alternate schedules created from resource 

(robot) offers mutually agreed by cooperation mechanism 

(heterarchical operating mode). The holonic manufacturing 

control automatically switches between these two modes. 

The holonic control strategy follows the key features of the 

PROSA reference architecture (Van Brussel et al., 1998; 

Valkaenars, 1994), implemented as an extended HMES: 

• Automatic switching between hierarchical (efficient / 

optimal use of resources) and heterarchical (agility to 

order changes, e.g. rush orders, and fault tolerance to 

resource breakdowns) production control modes. 

• Automatic planning and execution via Supply Holons 

(SH) of part supply; automatic generation of self-supply 

tasks upon detecting local storage depletion. 

• In-line vision-based part qualification and inspection of 

products in user-definable execution stages. 

• Robotized processing (e.g. assembling, machine 

tending, fastening, assembling) under visual guidance 

2. SYSTEM ARCHITECTURE 

As suggested by the PROSA abstract, the manufacturing 

system was broken down into three basic holons:  

1. Resource Holons (RH): they hold information about cell 

resources. Any resource may have a number of sub-

resources, which are also seen as holons.  

2.  Product Holons (PH): they hold information about a 

product type. The product information is more than a 

theoretical description of the physical counterpart but not 

directly associated with one individual physical item, 

unlike the resource holon (Leitao and Restivo, 2006). 

3. Order Holons (OH): represent all information necessary 

to produce one item of a product type. This holon is 

directly associated with the emerging item, it holds 

information about its status. OHs are created by the GPS 

from an Aggregate List of Product Orders generated at 

ERP level. Alternate OH are created in response to 

changes in product batches (rush orders) and failures 

(resource breakdown, storage depletion).  

A holon designs a class containing data fields and 

functionalities. Beside the information part, holons possess a 

physical part too, like the product_on_pallet for OH.  

The way in which different types of holons communicate and 

the type of information they exchange depends on the 

functionalities imposed to the manufacturing cell. Fig. 2 

shows the interaction diagram of the basic holon classes as 

they were implemented into software to solve scheduling and 

failure management problems. A HolonManager hosts all 

holons and coordinates the data exchange.  

The HolonManager entity is responsible with the planning 

(by help of Expertise Holons – EH) and management of OH 

as Staff Holons in the PROSA architecture do; in addition, it 

externally interfaces the application (maps the OH list in 

standard PLC files and tracks OH execution).  

A basic process plan is generated initially, upon receiving 

from the ERP level an APO or raw orders, based on: (i) 

Knowledge-based scheduling (KBS, inspired by Kusiak, 

1990) or (ii) Resolved Scheduling Rate Planner (RSRP, 

Borangiu, 2008). This basic process plan is computed at the 

global horizon of P products of the aggregate batches, and 

consists from a list of Supply Holons responsible for feeding 

the local robot storages and a list of Order Holons driving 

product execution. The OH list is mapped into PLC files for 

batch execution. 



 
Fig. 2. Basic holon cooperation and communication structure in the semi-heterarchical control architecture 

Alternative process plans, triggered by resource failure, local 

storage depletion or occurrence of rush orders, are pipelined 

automatically: (a) at the horizon of Ep  products in course of 

execution in the system, based on heterarchical contract 

negotiation schemes (CNP-type) between valid resources; (b) 

at the global horizon of ET ppP −−  remaining products, 

=Tp  number of terminated products, based on hierarchical 

GSP. Two categories of changes are considered: 

1. Changes occurring in the resource status at shop floor 

level: (i) breakdown of one resource (e.g. robot, machine 

tool); (ii) failure of one inspection operation (e.g. visual 

measurement of a component/assembly); (iii) depletion of 

one robot workstation storage.  

2. Changes occurring in production orders, i.e. the system 

receives a rush order as a new batch request (APO). 

All these situations trigger a fail-safe mechanism which 

manages the changes, providing respectively fault-tolerance 

at critical events in the first category, and agility in reacting 

(via ERP) to high-priority batch orders. A FailureManager 

was created for managing changes in resource status. A 

virtually identical counterpart, the RecoveryManager, takes 

care of the complementary event (resource recovery).  

Upon monitoring the processing resources (robots), their 

status may be at run time: available – the resource can 

process products; failed – the resource doesn’t respond to the 

interrogation of the PLC (the entity responsible for Order 

Holon execution), and consequently cannot be used in 

production; no stock – similar to failed but handled different 

(the resource cannot be used in production during re-supply, 

but it does respond to PLC status interrogations.  

There are two types of information exchanges between the 

PLC (master over OH execution) and the resource controllers 

for estimation of their status during production execution:  

• Background interrogation: periodic polling of I/O lines 

RQST_STATUS and ACK_STATUS between the PLC –

OH coordinator and the Resource Controllers (robot, 

machine tool, ASRS). 

• Ultimate interrogation:  just before taking the decision to 

direct a pallet (already scheduled to a robot station) to the 

corresponding robot workplace, a TCP/IP communication 

between the PLC and the robot controller takes place 

(according to the protocol in Fig. 3). This communication 

validates the execution of the current OH operation on the 

particular resource (robot). 

 
Fig. 3. Communication protocol between the PLC and a 

Robot Controller authorizing an OH operation execution 
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In this protocol, READY is a signal generated by the Robot 

Controller indicating the idle or busy state of the resource 

(robot). The PLC requests through its digital output line 

RQST-JOB to use the robot for an assigned OH operation 

upon the product placed on the pallet waiting to enter the 

robot workstation. D1 details the scheduled job via the TCP 

PLC transmission line from the PLC to the Robot Controller.  

The Robot Controller indicates in D2 job acceptance or 

denial via the TCP Robot transmission line.  

When the job is accepted, the pallet is directed towards the 

robot's workplace, where its arrival is signalled to the Robot 

Controller by the Pal In Pos digital output signal of the PLC. 

Job Done is a signal indicating job termination (D3 details 

the way the job terminated: success, failure). T1 is the 

decision time on job acceptance (storage evaluation etc), T2 

is the transport time to move the pallet from the main 

conveyor loop to the robot workplace, and T3 is the time for 

job execution. 

Upon periodic interrogation, the entity coordinating OH 

execution – the PLC – checks the status of all resources, 

which acknowledge being available or failed.  The ultimate 

interrogation checks only the state of one resource – the one 

for which a current operation of an OH was scheduled; 

during this exchange of information, the PLC is informed 

whether the resource is available, failed or valid yet unable to 

execute the requested OH operation upon the product due to 

components missing in its storage (no stock status). 

3. MANAGING RESOURCE BREAKDOWN/RECOVERY  

When the failure status of a resource is detected, the 

FailureManager is called, executing a number of actions 

according to the procedure given below (Fig. 4):  

1. Stop immediately the transitions of executing OH, i.e. the 

circulation of products_on_pallets in the cell; production 

continues at the remaining valid resources (robots). 

2. Update the resource holons with the new states of all 

robots. 

3. Read Order Holons currently in execution in the cell. 

4. Evaluate all products if they can still be finished, by 

checking the status of each planned OH: 

• if the OH was in the failing robot station, mark it as 

failed and evacuate its product_on_pallet; 

• if the OH is in the system, but cannot be completed 

anymore because the failed resource was critical for 

this product, mark it as failed and evacuate its 

product_on_pallet; 

• if the OH is not yet in the system, but cannot be 

completed due to the failure of the resource which is 

critical for that product, mark it as failed ( en .is the 

total number of such OH). 

5. For the remaining failwipwip nnn −=
' schedulable OH in 

the system, locate their products_on_pallets and 

initialize the transport simulation associated to the 

current operational configuration of the system. 

Authorise the 
'
wipn OH to launch Contract Net Protocol-

based negotiations (HBM) with the remaining available 

Resource Holons for re-scheduling of their associated 

operations. wipn  are the OH currently introduced in the 

system (in the present implementation, 5≤wipn ), and 

failn is the total number of OH currently in the system, 

which cannot be finished because they need the failed 

resource at some moment during their execution 

6. Run the Global Production Scheduling algorithm for the 

ewipfin nnnN −−−  OH not yet introduced in the 

system, where a number of N OH was scheduled in total 

and finn   OH were finished. 

7. Delete the orders stored on the system and transfer the 

updated orders to the system 

8. Resume product_on_pallet transfer within the transport 

system (allow OH transitions in the system). 

It might happen that a failed robot is repaired before the 

current manufacturing cycle is finished. In this recovery 

case, the cell regained the ability to run at full capacity but 

the lined up orders do not make use of this fact, as they are 

managed by the system in a degraded mode.  

The procedure of rescheduling back the Order Holons is 

virtually identical to the one used in case of failure; the main 

deference is that none of the products_on_pallets being 

currently processed need to be evacuated since there is no 

reason to assume they could not be completed. Any orders 

that were marked as failed due to temporary resource 

unavailability are now untagged and included in the APO list 

for scheduling at the horizon of the rest of batch, as they may 

be manufactured again due to resource recovery (Lastra and 

Delamerm, 2006). 

4. MANAGEMENT OF RUSH ORDERS  

The system is agile to changes occurring in production orders 

too, i.e. manages rush orders received as new batch requests 

from the ERP level while executing an already scheduled 

batch production (a sequence of OH).  

Because of the similarity between a task run on a processor 

and a batch of orders executed in a manufacturing cell (both 

are pre-emptive, independent of other tasks or batches, have a 

release, a delivery date and an fixed or limited interval in 

which they are processed), the Earliest Deadline First (EDF) 

procedure was used to schedule new batches (rush orders) for 

the robotized assembly cell. 

EDF is a dynamic scheduling algorithm generally used in 

real-time operating systems for scheduling periodic tasks on 

resources, e.g. processors (Sha et al., 2004). It works by 

assigning a unique priority to each task, the priority being 

inversely proportional to its absolute deadline and then 

placing the task in an ordered queue. Whenever a scheduling 

event occurs the queue is searched for the task closest to its 

deadline term to be met (Borangiu et al., 2008a; Barata, 

2005; Rahimifard,2004). 



 

Fig.4. Dynamic OH rescheduling at resource failure/storage depletion with embedded CNP job negotiation (monex)

A feasibility test for the analysis of EDF scheduling was 

presented in (Liu and Layland, 1973); the test shows that if: 

(1) all tasks are periodic, independent, fully pre-emptive; (2) 

all tasks are released at the beginning of the period and have 

deadlines equal to their period; (3) all tasks have a fixed 

computation time or a fixed upper bound which is less or 

equal to their period; (4) no task can voluntarily stop itself; 

(5) all overheads are assumed to be 0; (6) there is only one 

processor, then a set of n periodic tasks can be scheduled if 
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or, in other words, if the utilization of the processor 

(resource) is less than 100%. 

A batch or Aggregate Product Order list (APO) is composed 

of raw orders (list of products to be manufactured); this is 

why two different batches are independent. Nevertheless, 

there is a difference between a task and a batch of products: a 

task is periodic while a batch is generally a periodic. This 

means that instead of testing the feasibility of assigning 

batches to the production system considering the equation 

above, one can use the following test: "for an ordered queue 

(based on delivery date) of n batches with computed 

makespan, if ni

i

j

ij ,1,atedelivery_dmakespan

1

=≤∑
=

, then 

the batches can be assigned to the production cell using EDF 

without passing over the delivery dates". 

This EDF approach is used to insert rush orders in a 

production already scheduled by the GPS; the steps below are 

carried out for inserting a new production batch during the 

execution of a previously created sequence of OH (Fig. 5): 

0. Compute the remaining time for finishing the rest of the 

current batch (if necessary). 

1. Insert new production data: product types, quantities, 

delivery dates. 

2. Separate products according to their delivery date. 

3. Form the entities "production batches" (a production 

batch is composed of all the products having the same 

delivery date). 

4. Generate raw orders in production batches (APO lists). 

5. Schedule the raw orders (using a GPS algorithm, e.g. 

KBS or Step Scheduler), compute the makespan and test 

if the inserted batch can be done (the makespan is 

smaller than the time interval to delivery date if 

production starts now).   



 

Fig. 5. Add rush order diagram and integration with dynamic job re-scheduling based on CNP negotiation (monex) 

6. Analyse the possibility of allocating batches to the cell 

using the EDF and second equation for feasibility test. 

7. Allocate the batches on the production system according 

to the EDF procedure. 

8. Resume execution process with new scheduled OH. 

In this mechanism for managing the changes in production 

orders, an inserted batch is a batch that arrives while another 

one is in execution. A monitored batch is one whose orders 

are scheduled and assigned to the cell (it has a priority and is 

waiting to enter execution). A current batch is that executing. 

The capability of adding rush orders to production needs a 

new entity, the batch. Thus, job scheduling is done at batch 

level (all orders with the same delivery date are scheduled 

together) and then batches are assigned to the cell according 

to their delivery date, using the EDF procedure (Table 1).  

Table 1. The minimal structure of a batch holon 

Type Name Description 

string batch_name Name or index of the batch 

Date delivery_date Delivery date of the orders 

Product[ ] requested_products Vector containing the products 

to be executed 

Resource[ ] used_resources Vector containing the 

configuration used for current 

batch planning 

Order[ ] orders_to_execute Vector containing the entities 

OH already scheduled using a  

specified cell structure (defined 

by the variable used_resources) 

int makespan Time interval needed for the 

current batch to be executed if  

started now and not interrupted 

(it is a result of scheduling) 

Because batch execution is interruptible (pre-emptive 

system), new batches (rush orders) can be introduced exactly 

at the moment of their arrival. The insertion process is 

triggered by the arrival of a "new order" event; a real-time 

acceptance response can be provided (via the ERP level) to 

the customer if the rush order can be executed at requested 

delivery date. 

5. CONCLUSIONS 

The distributed control solution was implemented, tested and 

validated on a real manufacturing structure with 6 industrial 

assembly robots and 4-axis CNC milling machines, using the 

holonic approach. This holonic platform was finalized during 

2008 in the Laboratory of Robotics and Artificial Intelligence 

of the Department of Automation and Industrial Informatics 

within the University Politehnica of Bucharest (Fig.6). 

 

Fig. 6. Layout of the manufacturing cell with holonic control  



The control is structure is fully operational, both in the 

normal hierarchical mode and upon switching automatically 

to the heterarchical one in response to discussed changes. 

Production scheduling at batch level was implemented and 

tested using the EDF method; Fig. 7 shows the results 

obtained when two new batch orders T24 = (4, 17) and T25 = 

(1, 3) are received at time T = 2 after the execution of three 

planned batches: T11 = (2, 18), T12 = (3, 20), T13 = (7, 11) 

started. Here Tij = (m, dd) signifies the number (j) of the 

batch for which execution was requested at date i; the batch 

has the makespan m and due delivery date, dd (both 

expressed in time units). 

 
 

Fig .7. Inserting new batches among executing ones with the EDF 

algorithm. 
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