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The paper describes a holonic control architecture and implementing issues for agile job shop assembly

with networked intelligent robots, based on the dynamic simulation of material processing and

transportation. The holarchy was defined considering the PROSA reference architecture relative to

which in-line vision-based quality control was added by help of feature-based descriptions of the

material flow. Two solutions for production planning are proposed: a knowledge-based algorithm using

production rules, and an OO resolved scheduling rate planner (RSRP) based on variable-timing

simulation. Failure- and recovery-management are developed as generic scenarios embedding the

CNP mechanism into production self-rescheduling. Aggregate Order Holon execution is realized by

OPC-based PLC software integration and event-driven product transportation. The holonic control of

multiple networked robot-vision stations also features tolerance to station computer- (IBM PC-type),

station controller- (robot controller), quality control- (machine vision) and communication- (LAN)

failure. Fault tolerance and high availability at shop-floor level are provided due to the multiple physical

communication capabilities of the robot controllers, to their multiple-axis multitasking operating

capability, and to hardware redundancy of single points of failure (SPOF). Implementing solutions and

experiments are reported for a 6-station robot-vision assembly cell with twin-track closed-loop pallet

transportation system and product-racking RD/WR devices. Future developments will consider

manufacturing integration at enterprise level.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A networked robotized job shop assembly structure is composed
by a number or robotic resources, linked by a closed-loop
transportation system (closed-loop conveyor). The final products
result by executing a number of mounting, joining and fixing
operations by one or several of the networked robots. The set
of specific assembling operations is extended to on-line part
conditioning (locating, tracking, qualifying, handling) and check-
ing of relative positioning of components and geometry features.
These functional extensions are supported by artificial vision-
merging motion control tasks (Guiding Vision for Robots—GVR)
and quality control tasks (Automated Visual Inspection—AVI). Real-
time machine vision is used to adjust robot paths for component
mounting or fastening, to check for proper geometry and pose of
assembly components, and to inspect the assembly in various
execution stages (Borangiu, 2004).
ll rights reserved.
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Traditional networked assembly structures have either a hybrid

or heterarchical architecture. The first one, derived from the
hierarchical architecture, allows cooperation and sharing of
information between lower-level (robot) controllers; a supervisor
initiates all the activities and then the subordinates cooperate to
perform them. The second is formed by a group of independent
entities called agents that bid for orders based on their status and
future workload. There is no master–slave relationship; all the
agents including the manager of a particular order are bidding for
it. Due to the decentralized architecture, the agents have full local
autonomy and the system can react promptly to any change made
to the system. However, because the behaviour of an order
depends on the number and characteristics of other orders, it is
impossible to seek global batch optimization and the system’s
performance is unpredictable. In order to face resource break-
downs, networked assembly structures should use robot con-
trollers with multiple-network communication facilities allowing
for fault tolerance: data saving and task redistribution.

There is currently a new trend in manufacturing control
to apply the principle of holons in industrial-networked robotics.
The interpretation of the holon as a whole particle proposes an
entity which is entirely stand-alone or supreme as is (a whole),
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but belongs to a higher order system as a basic individual part
(a particle). If a limited number of parts (holons) fail, the higher
order system should still be able to proceed with its main task by
diverting the lost functionality to other holons (Ramos, 1996;
Deen, 2003).

Based on Koestler’s concept, the following definitions, estab-
lished by the Holonic Manufacturing Systems (HMS) consortium
(Van Brussel et al., 1998) were accepted and used in the present
project:
�
 Holon: An autonomous and co-operative building block of a
manufacturing system for transforming, transporting, storing
and/or validating information and physical objects. It consists
of an information- and physical-processing part. A holon can
be part of another holon.

�
 Autonomy: The capability of an entity to create and control the

execution of its own strategies.

�
 Cooperation: A process whereby a set of entities develops and

executes mutually acceptable plans.

�
 Holarchy: A system of holons that can cooperate to achieve a

goal or objective. The holarchy defines the basic rules for
cooperation of holons and thereby limits their autonomy
(Wyns et al., 1997).

�
 Holonic manufacturing execution system (HMES): A holarchy

integrating in (custom-designed) software architecture the
entire range of manufacturing tasks from ordering to design,
production.

�
 Holonic attributes: Attributes of an entity that make it a holon.

The minimum set is thus autonomy and cooperativeness
(Bongaerts et al., 1996, 1998; Markus et al., 1996; Morel
et al., 2003).
Based on the PROSA reference architecture, several research
groups developed holonic control frameworks to operate parts of
a manufacturing system (e.g. part processing on multiple machine
tools), but only a few considered material-handling tasks (Liu and
Layland, 1973) and transportation. The negotiation scenario,
proposed by Usher and Wang (2000), for the cooperation between
intelligent agents in manufacturing control, or the ‘‘n products
on m machines’’ KB scheduling algorithms, proposed by Kusiak
(1990), are limited to production planning and job scheduling, and
do not consider: (a) the constraints imposed by the transportation
system (e.g. cell conveyor); (b) the need to qualify (recognize,
locate, check for collision-free robot access and correct robot
points for part mounting) assembly components; and (c) verify
the assembly in different execution stages.

The proposed holonic control framework faces the difficulties
arising when moving from control theory to practice, because the
(particular) cell conveyor is modelled, parameterized and inte-
grated in the generic job scheduling, and the material components
(parts, assembly) are described by task-dependent features
that are extracted through image processing at execution
time in view of material qualifying and product inspection. In
order to face resource break-downs, the job shop assembly
structure using networked robot controllers with multiple-LAN
communication is able to replicate data for single-product
execution and batch production planning and tracking (Cheng
et al., 2006).

The holonic implementing framework will be exemplified on a
discrete, repetitive production system with part machining,
robotized assembling and visual quality control capabilities. The
management of changes is imposed at resource breakdown,
storage depletion and occurrence of rush orders. The expected
performances of the system are: high productivity (selectable cost
functions: throughput, machine/robot loading, time), high accu-
racy of operations, adaptability to material flow variations and
shop-floor agility.

The functionalities below were imposed in the development of
the holonic control system:
�
 adaptability and quick reaction in face of production changes
(rush orders);

�
 assistance to mounting (GVR) and product quality control (AVI)

by real-time machine vision; visual robot guidance during
precision assembly and visual in-line geometry control of
products are technical requirements imposed to the framework
to increase the quality of services performed;

�
 efficient (optimal) use of available resources (robot, CNC

machine tools) in normal operating;

�
 stability in face of disturbances (resource failures, storage

depletion).

The paper describes: (i) the design of a distributed control
architecture for networked assembly robots, automatically
switching between a hierarchical and heterarchical operating
mode; (ii) the definition of the holarchy and set up of the holon
structures; (iii) the design and software implementing of opera-
tion scheduling algorithms and HMES integration; (iv) the
solution adopted for fault tolerance to robot and CNC breakdown
(dynamic job reconfiguring instead of reprogramming) and high
availability (redundancy in SPOF hardware and inter-device
communication paths); (v) the definition of generic part qualify-
ing operations as framework features applying AI through real-
time, high-speed image processing.

In the first part of the paper a general framework is proposed
to implement a holonic manufacturing control solution. The
second part of the paper exemplifies the framework by a case
study using a particular industrial technology (Bosch-Rexroth
conveyor, Adept Technology robots and vision, etc.).

The paper is structured as follows: in Section 2 the proposed
system architecture at process level, the process simulation tool,
and integration at enterprise level are presented; Section 3
describes the semi-heterarchical control solution and the adopted
holarchy; Section 4 discusses failure/change and recovery
operating modes in which production is dynamically rescheduled
by pipelining a resource bidding mechanism of CNP type (at shop-
floor horizon) with a global scheduler (at aggregate batch
horizon); Section 5 explains how ordered assembly plans (Order
Holons) are mapped into conveyor routing PLC commands for
product execution and tracking; Section 6 reports implementing
issues, high availability solutions and experimental results.
2. System architecture and dynamic simulation tool

To be competitive, manufacturing should adapt to changing
conditions imposed by the market. The greater variety of
products, the possible large fluctuations in demand, the shorter
lifecycle of products expressed by a higher dynamics of new
products, and the increased customer expectations in terms of
quality and delivery time are challenges that manufacturing
companies have to deal with to remain competitive. Besides
these market-based challenges, manufacturing firms also need
constantly to be flexible and adapt to newly developed processes
and technologies and to rapidly changing environmental protec-
tion regulations. A proposed solution to this problem is a
distributed architecture, in which information entities, having
manufacturing counterparts, cooperate to solve together the
assigned tasks. Such a type of holonic manufacturing control
architecture is presented in this paper.
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Fig. 1. Entities and their functions in the proposed knowledge-based holonic assembly system.
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For manufacturing structures with networked resources
(robots, machine vision, machine tools), as is the generic class of
product assembling with in-line part machining and interphasic
quality checking, a semi-heterarchical distributed control architec-

ture is proposed in which the organizational control is arranged on
two levels, referred to as global and local (Rahimifard, 2004). The
global level assumes the responsibility for planning and coordina-
tion of the shop-floor level activities (cell/line/factory) and the
resolution of conflicts between local objectives, whereas the local
level possesses the autonomy over the planning and control of
internal activities within a subsystem (e.g. the assembling robot

team). The team-based manufacturing paradigm (based on a wide
range of criteria: similarity of activities, definition of business
processes, planning and control requirements (Leitao and Restivo,
2006, Barata, 2005)) was adopted to provide the flexibility, agility
and responsiveness required to cope with volatility of production
demands.

In this semi-heterarchical control architecture, there is an
entity placed on a superior decisional level – the Global
Production Scheduler (GPS) – which sends aggregate product
orders, optimally scheduled – Order Holons (OH), to entities on
inferior levels – Device (e.g. Robot) Controllers – which cooperate
to accomplish these orders. In the proposed holonic system
the schedules delivered by the GPS are not imposed to any
of the individual resources (conveyor, robot, vision, machine tool);
instead, they are only treated as recommendations for the
decision-making entities—the OHs. These recommendations will
be followed as long as failures or changes do not occur in the
system (hierarchical operating mode); they will be ignored at
failure/change and recovery, being replaced by alternate schedules
created from resource (Robot Controllers) offers mutually agreed
by cooperation mechanisms (heterarchical operating mode). The
holonic manufacturing control automatically switches between
these two modes.

The flow of information between control units in the designed
system is always bi-directional due to the decentralized nature
of the architecture and the application of the holonic concept of
cooperation. This production control structure is derived from a
generic manufacturing one, formed by four types of entities, as
shown in Fig. 1 (Babiceanu et al., 2004; Borangiu et al., 2007;
www.rvholon.cimr.pub.ro):
1.
 A Global Production Scheduler, generating production plans for
all batch products in the form of OH. An algorithm base is
embedded into a knowledge-based system (KBS). A dynamic
production simulator acts as time-driven validation tool for job
scheduling. An inference engine in the KBS controls, according
to a forward chaining control strategy, the procedures of:
triggering production rules, switching between algorithmic
and simulation stages during planning, and production updat-
ing at failure/change occurrence (Bongaerts et al., 1996). The
GPS uses in its production rules, algorithmic base, respectively
variable time step scheduler classes of Expertise Holons (EH) to
generate OHs. EH have embedded expertise on process organi-
zation (products), execution (production rules, resources),
and optimization (machine/robot utilization, resource load
balancing, flow time, a.o.).
2.
 A PLC interface for Production Execution & Monitoring and
Database (PLCID) access entity, responsible for managing the
execution and monitoring the production jobs (sequence of



ARTICLE IN PRESS

T. Borangiu et al. / Engineering Applications of Artificial Intelligence 22 (2009) 505–521508
OH) and availability of resources in the system, and for keeping
track of products moving between stations.
3.
 A layer of Order Holons (OHp
(d), 1pppP) of variable depth

(basic OHs, d ¼ b i.e. production plans off-line computed for
the P final products and alternate OHs, d ¼ a i.e. production
plans rescheduled in real time at system failure/production
change and recovery.
4.
 Two types of Resource Holons:
� Robot/machine tool (or material conditioning) holons (RHl0 ,q),

formed by all robots, grippers, and tools together with their
controllers, responsible for machining, mounting, and
fastening parts, and for moving their arm-mounted cameras
in picture-taking points where the products are visually
inspected, respectively machines, clamping devices and
tools (Iwamura et al., 2005).
� Sensory (material tracking and checking) holons (SEl00 ,q),

formed by all machine vision systems (stationary – down
looking and mobile – arm mounted), and magnetic code
RD/WR devices, respectively used for component position
and geometry control and product tracking on pallets.
In this representation, the following notations were adopted:
O ¼ set of all operations (machining, assembly, conditioning);
P ¼ set of all assemblies (final products); OAp ¼ set of operations
Fig. 2. SOA integrates job-shop, team-based m
for assembly Ap, pAP; LR ¼ set of all RH; LS ¼ set of all SE; L ¼ set
of all resource types; Ql0 ¼ set of resources of type l0,l0ALR; Ql00 ¼ set
of resources of type l00,l00ALS, Ql ¼ set of resources of type l,lAL.

Fig. 2 shows the integration of this holonic assembly system at
enterprise level, in a SOA concept.

Service-oriented architectures (SOA) support the development
of more powerful reconfiguring and interoperability tools,
using more complex self-organization and learning techniques
(Babiceanu et al., 2004). Service composition in multi-agent
manufacturing systems is the combination of single services
and all the interaction patterns between them. The evolution and
re-configurability of this class of production structure is facilitated
using multi-agent systems supported by web services technology

since it is possible to add, remove and modify resources and
services without interrupting processes.

The SOA for enterprise manufacturing management and
control integrates four areas: (1) offer request management; (2)
management of client orders; (3) order- & supply-holon (OH, SH)
management; (4) OH execution & tracking). The first area is
responsible for generating offers in response to requests, based
on: product knowledge (embedded in Product Holons – PH),
resource capabilities (from RH data), supply constraints and
activities planning (CAPP). Once received customer orders, they
are interpreted, validated and mapped into aggregate production
orders (APO) at ERP level. APO is the input to the GPS in Fig. 1,
anufacturing with holonic robot control.
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which, generates the lists of supply- (SH) and order-holons
(OH).

The information part of a SH describes the part supply
parameters (types, number and placement of parts to be fed to
local robot storages, strategies to retrieve components from
central storages, transport data: part placement on supply pallets,
path data for supply pallets). The physical part of SH is given by
the pallets carrying assembly components and transporting them
from two central ASRS to local storages in all workstations. SH are
ordered, to minimize global supply time; executing an SH starts
by routing an empty supply pallet towards one central ASRS from
where a robot retrieves parts, then directs the full supply pallet to
a workstation where a local robot empties it by placing the parts
in the local storage.

Each OH passes through three phases: (1) waiting: a product
order was created, scheduled within the batch and inserted in the
multiple-batch planning; it waits to be introduced in the system;
(2) in execution: a pallet is associated to the product to be realized;
the pallet will be automatically routed to the resources that
have been selected to carry out the operations on the product;
(3) finished: once executed the pallet leaves the system, the
product is separated from the pallet that will be reused for
another product.

In case a rush production order is received, the OH manage-
ment in area 3 evaluates its feasibility considering the current
execution stage of already scheduled APO; if the insertion is
possible, the existing OH recommendations will be updated by the
GPS with the new rush order, without interrupting execution
of production. In case a resource breakdown or a depletion of
local storage is detected, there will be generated alternate
OHs, respectively a new SH by direct negotiation among valid
(operational and having necessary components) Resource Holons,
until system recovery (Lusch et al., 2008).

Activities in area 2 are at ERP level, activities in area 3 link the
ERP level for production planning and engineering (CAD, CAE)
with production execution, tracking and quality control (CAM,
CAQC) performed in area 4. Thus, area 3 integrates the business
(ERP) and process levels of the HMES at enterprise level, based on
Fig. 3. The dynamic simulator is based on a process-oriente
the SOA approach. Although the HMES development is a global
goal of the scientific project, this paper discusses only contribu-
tions to MES implementing in areas 3 and 4.

One important aspect considered in the design and imple-
menting of APO through OH and SH definition, scheduling,
execution and tracking was the development of generic solutions
rending the manufacturing control structure agile at process level.
In this respect, the KB job scheduler (GSP), operation & precedence
definition for products, production rules, mapping of OH and SH in
PLC format for product_on_pallet routing in the manufacturing
structure, and the contract-based negotiation mechanism among
resource controllers are generic. Also, the PH, RH and OH object
classes are generic, such as the functionalities of the EH. Of course,
the resources must be parameterized for specific manufacturing
structures, and similarly the terms of the negotiation contracts;
a decoupling between OH & SH creation (planning of pallet
routing) and execution on a particular cell conveyor was done by
parameterization of the transportation system (speed, connectiv-
ity and distances between workstations). Heterogeneous re-
sources may be integrated in the HMES because manufacturing
controllers (e.g. robot, machine) are agentified by software

wrappers hiding the details of each component. The wrapper acts
as an abstract machine to the agent supplying primitives that
represent the functionalities of the physical component and its
industrial controller. The agents (embedded in IBM PC generic
station computers) access the wrapper using a local software
interface (proxy) where all the services of interest are defined.

One central component of the system’s software architecture is
a simulator, designed as a multi-usage tool: (i) Production
Configuration Manager (allows the user to download/configure
batch production orders, production plans and resource capabil-
ities); (ii) Step Scheduler (time-driven production planner and
validation tool—outputs OH sequence on a cost base: throughput,
resource load, total time); (iii) Failure and Recovery Manager
(2-stage time-driven job re-planning: (s1) re-allocate resources
for products in progress—introduced in the system but unfin-
ished; (s2) redefine batch production and reschedule remaining
products—redefine OH and validate their execution); (iv) Production
d (product_on_pallet transport) Graphic User Interface.
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Tracking (event-driven pallet tracking in conveyor segments and
workstations).

The dynamic user-configurable, interactive simulator was
integrated in the semi-heterarchical production control software
(aras 3 and 4—product scheduling, execution and tracking), being
adapted to the real transportation system (see Fig. 3).

The entire system is dotted by stopping mechanisms allowing
keeping a pallet at a certain fixed position while other pallets may
move. The stoppers block a pallet as it reaches the stopper’s
position while the conveyor is still running, ensuring that other
pallets are still moved. At each intersection an elevator serves as
stop–switch combination to stop first an approaching pallet and
then transport it to an intersecting conveyor (either a lateral
branch or to the second main conveyor). These main elements are
all present in the simulation and work exactly as in the real
system. The software uses a transportation time matrix (TTM),
which was created by measuring the actual time used by the real
system to transport a pallet from one point of interest to another
(in general from one stopper or elevator to the next). The
simulation’s smallest time index corresponds to one advancement
step of a pallet and is 0.5 s.

The transport simulation is also used to in-line validate global
production schedules. However, there is a fundamental difference
in using the core routines developed to realize the correct pallet
transportation:
�

Fig
wit
In the case of visual simulation, the routines run in a timed
mode. This means that after each iteration of the main program
loop a timer stops the program and waits until the smallest
time index of 0.5 s has passed by and only after that allows
another iteration of the main program loop. The result of this
. 4. Holonic manufacturing system with self-supply of assembly parts: 1 Cartesian robo

h 2 cameras: fixed (FCi) and mobile (MCi)), tending 2 CNC milling machines. Products a
pause is a smooth running in 0.5 s steps of the simulation,
which, in combination with the measured transportation time
matrix or driven by events (signals received by the PLC from
sensory devices), reproduces the behaviour of the real system.

�
 When the routines are used to solve the scheduling problem,

they ‘‘transport’’ the pallets in the system with an infinitely
high speed (limited only by the computer’s calculation speed).
As soon as one iteration of the transport functions has finished,
the next one starts. Since none of the belt segments or the TTM
values is changed in this simulation, the resulting time indexes
still correspond exactly to 0.5 s and may be used to define the
production schedule (the OH list).

The simulator’s working principle and role in scheduling are
further detailed: at each iteration, the simulator’s functions check
all pallets that are currently in the system. A pallet is transported
one step if the conveyor segment is running and if there is no
active stopper or elevator at the pallet’s current position. If a pallet
happens to be in the way of another, the latter bumps into the first
one, as it would be the case in reality. With this basic operation
mode all pallets may be transported freely in the system.

Fig. 4 shows the 6-robot assembly cell with self-supply used
for to develop the holonic control.

Constraints imposed by the cell architecture ask for another
control layer which ensures that blocking situations do not occur
while the system is operational. Since there are four robot-
machine tools stations, there is no need to have more than five
pallets simultaneously circulating in the cell (one exits the cell).

The robotic stations are interconnected by a closed-loop twin-
track, pallet-based power-and-free conveyor with four linear
bi-directional derivations that move subassemblies fixed on pallets
t for pallet feeding, 2 SCARA and 2 vertical articulated for assembly, each one

re tracked by magnetic code read/write devices (MC R/Wi).
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in single or double access production stations: ASi,3pip4, ASij,1p
ip2, 1pjp2. The robot controllers RCi have the ability to commu-
nicate via digital I/O lines and Ethernet with a PLC. The PLC’s main
task is to operate the conveyor system and to manage the execution
of production, and supply, i.e. OH and SH. Each controller is
connected to a Station Computer SCi used to: edit and debug
application programs, create vision models, monitor the robot’s
activity, keep a log, and replicate the resource’s functionalities.

The PLC also assigns tasks to robots upon resource negotiation,
and receives task-termination signals and status information from
robot controllers. The PLC serves thus as general interface for
scheduling, execution, and failure/recovery management of
production and supply at shop-floor level.
3. Semi-heterarchical manufacturing architecture and holarchy

The distributed control solution proposed in this project
provides a set of functionalities rending the material-conditioning
cell flexible, rapidly reacting to changes in client’s orders (batch
size, type of products, alternate technologies, rush orders, updated
programs), and fault tolerant to resources getting down tempora-
rily. In fact, the holonic control architecture proposed follows the
key features of the PROSA reference architecture (Van Brussel
et al., 1998; Valckenaers et al., 1994), extended with:
�
 Automatic switching between hierarchical (for efficient use of
resources and global production optimization) and heterarch-

ical (for agility to order changes, e.g. rush orders, and fault
tolerance to resource break downs) production control modes.

�
 Automatic planning and execution of assembly component

supply; automatic generation of self-supply tasks upon
detecting local storage depletion,

�
 In-line vision-based part qualifying and quality control of

products in various execution stages.

�
 Robotized material processing (e.g. assembling, fastening)

under visual control/guidance.
Resource Holons
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As suggested by the PROSA abstract, the manufacturing system
was broken down into three basic holons, the Resource Holon, the
Product Holon, and the Order Holon. Each of these holons may exist
more than once to fully define the manufacturing cell. Order
Holons are created by the Global Production Scheduler from the
aggregate list of product orders (APO) generated at ERP level
(stage 2 in the enterprise SOA, Fig. 2).

Alternate OH are automatically created in response to changes
in product batches (rush orders) and to failures occurring during
execution (resource breakdown, storage depletion). A holon
designs a class containing data fields as well as functionality.
Beside the information part, holons usually possess a physical
part, like the product_on_pallet for OH (Duffie and Prabhu, 1994).

The way in which different types of holons communicate with
each other and the type of information they exchange depends on
the nature of the manufacturing cell. Fig. 5 shows the interaction
diagram of the basic holon classes as they were implemented into
software to solve scheduling and failure/recovery management
problems. A separate software module, the HolonManager hosts
all holons in form of arrays of certain types of holons and
coordinates the data exchange among them.

The HolonManager entity is responsible with the planning (with
help of Expertise Holons—EH) and management of OH exactly as
Staff Holons in the PROSA architecture do; in addition, the
HolonManager interfaces the application with the exterior (maps
OH into standard PLC file and tracks OH execution for user feedback).
Since a single holon may be seen as a class object in the object-
oriented programming environment (C# and .net 3.0 framework
tools have been used), each of the three basic holon types was
realized as a separate class. The instances necessary to define the
manufacturing cell are then hosted by the class Holons.HolonManager.
Each type is present as an array which may be scaled dynamically if
necessary. Thus, the array of Holons.Product class instances assumes a
size of existing product types; each element represents one product
type with all necessary info to generate OH of this product type.

A Resource Holon holds information about cell resources. Any
resource may have a number of sub-resources, which are also seen as
Product Holons 
(operation, tool, 

material, storage)

ns

es

Available operating modes, 
models, programs

Job scheduling

Describe
work-to-plan

nnounce
rk-to-do

Robot controllers, 
Machine CNC, 
Conveyor devices

Product Database

Storage 
depletion

olons

Order change

cture in the semi-heterarchical control architecture.



ARTICLE IN PRESS

T. Borangiu et al. / Engineering Applications of Artificial Intelligence 22 (2009) 505–521512
holons. This project considers a global resource (e.g. robot system)
with all its sub-resources as a holon without the distinction of sub-
systems. The hardware part of this type of holon is the physical
manipulator and controller with its functions. A permanent data
exchange between hardware and software ensures that the actual RH
status is accessible through its software representation:

A Product Holon holds information about a product type. Any
type that may be produced in the manufacturing system and
resource setup should be defined in a Product Holon. The fact that
such a holon exists does not necessarily mean that the concerned
product is being executed (e.g. assembled). Only the array of Order
Holons will specify that something is manufactured and in what
quantity. The product information is more than a theoretical
description of the physical counter part but not directly associated
with one individual physical item, unlike the Resource Holon
(Leitao and Restivo, 2006).
Public Member Functions

Void D
efineRobot (SubResource[] sub_resources)
E
ntirely defines a robot’s sub-resources (operations).
bool O
rderHandOver (short order_index, short sub_resource)
C
ompletes the order hand-over to a resource and immediately starts the robot.
void O
perationCompleted ()
F
rees the resource and notifies the order that an operation has been completed.
void A
llocateTime (ulong time of arrival, unit task time)
A
llocates operation time on this resource.
void S
ubResourceFailed (string op_name)
M
arks specific or all sub-resources as failed.
void S
ubResourceRecovered (string op_name)
M
arks specific or all sub-resources as operational.
void R
esetHolon (bool status_reset)
R
esets the reservation-end-time and status (prepare for new run).
Public Attributes

Sub_Resource
 SubResources
Indexec class containing all available operations of this resource.
Properties

short
 HolonIndex [get, set]
Unique identifier corresponding to array position.
string
 Name [get, set]
Name of this resource spelled out.
short
 OperationCount [get]
Total number of operations installed on this resource.
RobotStatus
 Status [get, set]
Current operational status of this resource.
ulong
 MachineHours [get]
Total amount of time this resource was in use.
ulong
 ReservationEndTime [get]
Time index to which this resource will become available, if busy.
short
 OrderHolonIndex [get]
Identifyer of order holon currently processed by this resource.
short
 InProgressPointer [get]
Points to the operation which is currently in progress.
unit
 RemainingTime [get, set]
Time remaining until current operation is completed.
An Order Holon represents all information necessary to produce
one item of a certain product type. This holon is directly associated
with the emerging item, it holds information about the status of this
very item at all times reaching from assembly not started yet through
order progressing to order completed. The information, data and
processing methods embedded in an Order Holon are given below:

//Information about the assembly plan of a product:

//String of characters for the OH name, identical to product name

string name

//Number representing the index of the current order holon

int holon_index

//Integer representing the no. of operations to be done on current

OH

int operation_number

//Vector with names of operations to be executed

String[ ] operations ¼ new String[maximum_operations]

//Vector of precedences (e.g. let ibe the index of some operation
//from the operations vector; then precendece[i] contains the

index

//of the operation that must be executed before the current one

int[ ] precedence ¼ new int[maximum_operations]

//Information about system resources:

//Number of resources in the system

int resource_number

//Array storing information about operations executable on

resources

int[,] resources ¼ new int[maximum_operations,

maximum_resources]

//Array storing the execution times of operations, on each

resource

//one operation may have different execution times on different

resources

float[,] operation_time ¼ new float[maximum_operations,

maximum_resources]

//Unique information resulting from the planning process:

//Vector containing times at which empty pallets (OH starting

execution)

//must be introduced in the system

float[] planning_time ¼ new float[maxim_planning]

//Vector containing the operations to be executed on the product

//in the scheduled order

int[] operation_planning ¼ new int[maxim_planning]

//Vector containing the resources which were associated to

scheduled

//operations

int[] resource_planning ¼ new int[maxim_planning]

//Integer representing the number of scheduled operations

int var_planning

//Information used during scheduling:

//Index of the resource on which is currently the OH

int actual_position

//Status of the holon: scheduled or not

bool holon_status

//Status of each operation: not planned, selected for planning,

planned

int[] operation_status ¼ new int[maximum_operations]

//Resource on which is the current holon

int current_resource

//Operation executed at present on the current holon

int current_operation

//Time at which ends the execution of the current operation

(different from

//operation execution time)

float remaining_time

//Vector indicating whether current operation was chosen for

planning or not

bool[] operation_checked ¼ new bool[maximum_operations]

//Processing methods for the Order holon class:

//Constructor

public order_holon()

//Copying Constructor

public order_holon(order_holon oh)

//Operator ¼ ¼ indicates whether two holons are identical

public static bool operator ¼ ¼ (order_holon oh1, order_holon

oh2)

//Operator ! ¼ indicates whether two holons are different

public static bool operator ! ¼ (order_holon oh1, order_holon oh2)

//Function checking whether a holon is valid for scheduling

public bool valid_holon(int index_op)

//Functiion checking whether transport operations must be

inserted

public bool test_transport(int index_op,int index_res)

//Function which inserts an operation to be scheduled

public void insert_operation(string operation_name,int

index_resource,

float prel_time, int prec)

//Function which inserts a scheduled operation

public void add_planned_op(int index_op, float time)

//Function which returns the duration of the operation of specified

name

public float duration(int op)

Before production starts for a specific Aggregate List of Product
Orders (APO created at ERP level), the OH exist only in electronic
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format; during production execution each OH develops on a pallet
in the system; after completion, the item gets cleared from the
exiting pallet and has now a physical form. OH are created, from
raw orders (items in the APO list), which are based on the
information stored in the Product Holon. If a certain product
needs to be manufactured n times, then n identical raw orders are
created first; When OH for these raw orders are created, the
information differs for each OH in terms of robot stations, which
need to be visited and the time at which they are visited (Onori
et al., 2006).

Unlike the Product Holon, seen as a general, static description
of a certain product type, which is rarely changed, the Order Holon
is the actual realization of one item of a product type and
undergoes many changes (of information as well as of physical
nature) during manufacturing. An OH is represented by a pallet

carrier with a unique identifier on it (magnetic tag), the
manufactured product (on the pallet), and a management program

running on the PLC communicating with resource controllers.
Because operation and resource indexes are used for imple-

mentation, indexes must conform to a standard structure and be
at the same time globally consistent and valid; thus, operations
will be indexed in increasing order, and resources added in time.

The mappings between the (holonic) system requirements and
the functional architecture are included in Figs. 1 and 5. Fig. 6
describes the mappings between the functional architecture and
the physical one (for the particular implementation). The real-
world representation refers to the model (the software
counterpart of the RH, PH and OH set) of the real-production
system which exists at the planning level.
4. Job scheduling and management of changes

The problem of generating a schedule for an aggregate batch
production and maintaining it despite changes in orders and
resource failures is very complex in general, and was subject of
concentrated development efforts during the past years (Pétin
et al., 2007; Higuera and Montalvo, 2007).

A basic process plan (quasi optimal) is generated initially,
upon receiving from the ERP level (customer order management
in Fig. 2) an aggregate production order (raw orders), based
on a method that can be selected from the following two:
(i) knowledge-based scheduling, inspired by Kusiak (1990)
reference research; (ii) Step Scheduler, acting as a Resolved
Scheduling Rate Planner (Borangiu et al., 2007). This basic
process plan is computed at the global horizon of P products
of the aggregate batches, and consists from a list of Supply
Holons (SH) responsible for feeding the local storages of robot
stations and a list of Order Holons (OH) responsible for product
execution.

An assembly plan APp
(d) of a product Ap is embedded in a

resulting Order Holon (OH) as a vector of triplets, each specifying
operation number oi, processing time ti

(d) of operation oi using

assembly plan d, and set of resources Ri
(d) to process the operation

oi:APp
(d)
¼ [y ,(oi,ti

(d),Ri
(d)),y], 1pipf, where RðdÞi ¼ fr

ðdÞ
1qi; . . . ;

rðdÞ5qig; q 2 Ql; l 2 L; 1pipf , rlq ¼ resource q of type l, qAQl, lAL.

The basic assembly plan with of as final operation is denoted

by d ¼ b (initial OH list), whereas d ¼ a are alternative plans
(b ¼ 0, a ¼ 1,2,y)—upon rescheduling requests triggered by a
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rush orders, resource failure/recovery or missing assembly
components. Experiments showed that ti

(b)pti
(a), oiAO.
4.1. Knowledge-based scheduling algorithm

The global production scheduling problem is of NP complex job
shop type, for which the computing of an analytical solution
increases rapidly with the problem’s dimension (number of
resources, number of operations executable by resources, number
of product operations, etc.). Therefore, heuristic methods were
chosen. The GPS entity has a global view of the production
system, which allows optimizing the total production time by
using a generic set of priority rules and equalizing the resource
loads.

However, at resource failure or occurrence of a rush order, the
GPS exits the heuristic algorithm and enters the inference engine
of the KBS, where the procedure of selecting alternative plans is
carried out.

The procedural knowledge of the KBS is in the form of
production rules, triggered by Expertise Holons, from which three
sets were used to generate Order Holons. Some rules in these sets
stop the search of the inference engine and switch the control
process back to the heuristic algorithm: SEL_ALG (selection of the
appropriate scheduling algorithm), ALT_PLAN (starts and controls
the mechanism of selecting alternative OHs for a job), and
EVAL_RES (evaluates the computed assembly plans and decides
upon rescheduling to improve the global quality of solution at
batch level).

A criterion considered was to maximize the load of available
resources, i.e. each of the four assembly robots should have a
minimum of idling time. To achieve a maximum load of each
robot, the conveyor system should never be jammed by any pallet
carrying an item waiting to be processed by a robot.

Each individual item is being scheduled one step at a time. The
process is initialized by generating a queue of all the items of all
different products that must be manufactured. The queue is
composed in such a way that all items of one product follow each
other, and then the number of next products is added.

All possible operations of all items present in the system are
collected. An operation is considered as possible if the preceding
operations have been completed and if a resource is available to
carry out the task. An operation may appear more than once in the
list if it may be carried out on several robot stations. Once the list
created, seven priority rules are applied in a defined order until
only one operation remains. This operation is then scheduled on
the related robot. The list of possible operations is updated and
the priority rules are applied again. This process is being repeated
until the list of possible operations is empty. Now the time index
is increased to allow transportation and processing operations.
As time passes, robots become free, thus the list of possible
operations contains again elements. In that case, time is stopped
and the priority rules are applied again to schedule the next
operation. The planning algorithm is:

Step 0: set time index to zero, collect all possible operations
based on robot status and predecessor constraints of all items,
store them in list S (the list of possible operations)
Step 1: apply the following priority rules to select one
operation

P0: if any of the operations belong to an item already
introduced in the system, only consider these operations,
otherwise consider all found operations (the items in
progress have priority)
P1: choose the item(s) with the largest number of
successive operations
P2: choose the item(s) with the smallest number of
operations in S
P3: choose the item(s) with the largest number of
immediate successive operations
P4: choose the item(s) with the largest number of
unfinished operations
P5: choose the item(s) with the shortest processing time
P6: if several items remain in S, one is chosen randomly
Step 2: schedule the above chosen operation and update the
resource status
Step 3: update the list of possible operations S, if the list is
empty go to Step 4, else go to Step 1
Step 4: update the transport simulation and increase the time
index by one step
Step 5: if a robot finished to this time index, mark operation as
completed and store operation in schedule
Step 6: update robot status and list of possible operations S, if S
is empty go to Step 4, else go to Step 1

4.2. Step scheduler algorithm

The simulation program routines play an essential role in this
type of scheduling process, used at rush order or resource failure.
At each time moment it is imperative to know the exact location
of each pallet carrying the product so that no other pallet assumes
the same location, or that no pallet passes by another pallet,
which is physically impossible on the real system. For this reason,
the simulator is being used (but without any graphical output
and running on its maximum speed dictated by the processor
execution frequency) to ensure a realistic behaviour of the
transport action. The simulation variables also contain informa-
tion about the current status of the entire system, such as how
many pallets are in the system at the current time index.
Moreover, the time index is incremented in steps of 0.5 s, thus
at any point of the scheduling the current time index may be read
and stored in the schedule.

These time indexes correspond to the conveyor divert points
when production is executed on the real system. Time indexes
of interest stored while the schedule is generated are the time of
insertion of an item into the system, the time to which a certain
operation is started, and the time to which a certain operation is
completed; consequently, the algorithm acts as a Resolved
Scheduling Rate Planner (RSRP), because the global solution is
resolved in evolutions progressing at time slices depending on
effective product processing and transportation times. By inte-
grating the simulation variables, all necessary information is
present to run and validate the scheduling algorithm.

An iteration of the algorithm checks and completes the
following steps:

Step 1: check how many pallets are in the system, if there are
less than two pallets go to Step 2, else go to Step 3
Step 2: choose any item from the queue, based on termination
priority

Step 2.1: for the chosen item generate a list of all possible
operations based on predecessor constraints
Step 2.2: for each possible operation find all robots able of
executing the task and calculate the wait time for each
robot before the task could be executed once the item
arrived at the station
Step 2.3: choose the operation with smallest waiting time
and introduce the item on a new pallet with the destination
acquired before, store the current time index as insertion
time
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Step 3: execute a step of one time index increment with the
conveyor simulation and the robot operation execution. If a
robot terminates an operation go to Step 4. If a pallet arrives at
a robot station go to Step 6, else go to Step 5
Step 4: for the item that just finished an operation, store the
current time index as operation completion time, mark the
robot as free, then do the following:

Step 4.1: determine whether this item has been completed
(all operations have been carried out); if so, mark the item
as completed and send the pallet to the output, then
continue with Step 5
Step 4.2: for the chosen item generate a list of all possible
operations based on predecessor constraints
Step 4.3: for each possible operation find all robots able to
execute the task and calculate the waiting time for each
robot before the task could be executed once the item
arrived at the station
Step 4.4: choose the operation with the smallest operation-
start-time and send the pallet to that robot station
Step 5: if there are still items in the queue, or pallets in the
system, go back to Step 1, else exit the algorithm
Step 6: for the arriving item store the current time index as
operation start time, assign this item to the robot and mark the
robot as busy, continue with Step 1.

Once an item has been introduced, it will remain in the system
until it is completed. No item will leave the system and re-enter it
to a later point in time. In other words any sequence (respecting
the insertion rule of minimal waiting time) of alternating product
types may be introduced into the system.

4.3. Change/failure and recovery management with embedded CNP

negotiation

Alternative process plans, triggered by resource failure/recovery,
local storage depletion or occurrence of rush orders, are
automatically pipelined: (a) at the horizon of pE products in
course of execution in the system, based on heterarchical contract
negotiation schemes (e.g. CNP) between valid resources, and (b) at
the global horizon of P�pT�pE remaining products, pT ¼ number
of terminated products, based on hierarchical GSP. Two categories
of changes are considered:
1.
 Change occurring in the resource status at shop-floor level: (i)
breakdown of one manufacturing resource (e.g. robot, machine
tool); (ii) failure of one inspection operation (e.g. visual
measurement of a component/assembly); (iii) depletion of
one workstation storage (e.g. assembly parts are missing in one
local robot storage).
Resource available

Resource failed

failure

recovery

failure

launch

Failure/recovery 
management 

procedure launch

recovery

Fig. 7. Actions taken when a resource is
2.
 Change occurring in production orders, i.e. the system receives
a rush order as a new batch request (a new APO).

All these situations trigger a fail-safe mechanism, which
manages the changes, providing, respectively fault tolerance at
critical events in the first category, and agility in reacting (via ERP)
to high-priority batch orders. A FailureManager was created
for managing changes in resource status. A virtually identical
counterpart, the RecoveryManager, takes care of the complemen-
tary event when a resource recovers from breakdown or missing
parts are fed to the empty storage.

The states describing the processing capabilities of a resource
and the actions taken while transiting from one state to another
are presented in Fig. 7.

Upon monitoring the processing resources (robots), their
status may be at run time: available—the resource can process
products; failed—the resource does not respond to the interroga-
tion of the PLC (the entity responsible for Order Holon execution),
and consequently cannot be used in production; no stock—similar
to failed but handled different (the resource cannot be used in
production during its re-supply, but it does respond to PLC status
interrogations.

There are two types of information exchanges between the PLC
(master over OH execution) and the resource controllers (robot,
CNC) for estimation of their status during production execution:
�

de

refi

ch
Background interrogation: periodic polling of RQST_STATUS and
ACK_STATUS digital I/O lines between the PLC–OH coordinator
and the Resource Controllers (robot, CNC).

�
 Ultimate interrogation: just before taking the decision to

direct a pallet (already scheduled to a robot station) to the
corresponding robot workplace, a TCP/IP communication
between the PLC and the robot controller takes place (see
Fig. 8). This communication practically validates the execution
of the current OH operation on the particular resource (robot).

In this protocol, READY is a signal generated by the Robot
Controller indicating the idle or busy state of the resource (robot).
The PLC requests through its digital output line RQST-JOB to use
the robot for an assigned OH operation upon the product placed
on the pallet waiting to enter the robot workstation. D1 details the
scheduled job via the TCP PLC transmission line from the PLC to
the Robot Controller. The Robot Controller indicates in D2 job
acceptance or denial via the TCP Robot transmission line. When
the job is accepted, the pallet is directed towards the robot’s
workplace, where its arrival is signaled to the Robot Controller by
the Pal In Pos digital output signal of the PLC. Job Done is a signal
indicating job termination (D3 details the way the job terminated:
success, failure). T1 is the decision time on job acceptance (storage
Empty stock

pletion

ll
Event driven
 procedure

Resource state

State transition

Message

Supply 
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procedurelaunch

launch

anging from a state to another.
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evaluation, etc.), T2 is the transport time to move the pallet from
the main conveyor loop to the robot workplace, and T3 is the time
for job execution.

Upon periodic interrogation, the entity coordinating OH
execution – the PLC – checks the status of all resources, which
acknowledge being available or failed. The ultimate interrogation
READY 

RQST-JOB

TCP Robot 

TCP PLC 

Pal In Pos 

Job Done 

D1

D2

T1 T3T2

D3

Fig. 8. Communication protocol between the PLC and a Robot Controller for

authorizing an OH operation execution.

Fig. 9. Dynamic OH rescheduling at resource failure/storage
checks only the state of one resource—the one for which a current
operation of an OH was scheduled; during this exchange of
information, the PLC is informed whether the resource is available,
failed or valid yet unable to execute the requested OH operation
upon the product due to components missing in its storage
(no stock status).

When the failure status of a resource is detected, the
FailureManager is called, executing a number of actions according
to the procedure given below (Fig. 9):
1.
dep
Stop immediately the transitions of executing OH, i.e. the
circulation of products_on_pallets in the cell; production
continues, however, at the remaining valid resources (robots,
machine tools).
2.
 Update the Resource Holons with the new states of all robots.

3.
 Read Order Holons currently in execution (which are currently

in the production cell).

4.
 Evaluate all products if they can still be finished, by checking

the status of each planned OH:
� if the OH was in the failing robot station, mark it as failed

and evacuate its product_on_pallet;
� if the OH is in the system, but cannot be completed anymore

because the failed resource was critical for this pro-
duct, mark it as failed and evacuate its product_on_pallet;
letio
n with embedded CNP job negotiation (monex).
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� if the OH is not yet in the system, but cannot be completed
due to the failure of the resource, which is critical for
that product, mark it as failed (ne is the total number of
such OH).
5.
 For the remaining n0wip ¼ nwip�nfail schedulable OH in the
system, locate their products_on_pallets and initialize the
transport simulation associated to the current operational
configuration of the system. Authorize the n0wip OH to launch
Contract Net Protocol-based negotiations (HBM) with the
remaining available Resource Holons for rescheduling of their
associated operations. nwip are the OH currently introduced in
the system (in the present implementation, nwipp5), and nfail is
the total number of OH currently in the system, which cannot
be finished because they need the failed resource at some
moment during their execution.
6.
 Run the Global Production Scheduling algorithm for the
N�nfin�nwip�ne OH not yet introduced in the system, where
a number of NOH was scheduled in total and nfin OH were
finished.
7.
 Delete the orders stored on the system and transfer the
updated orders to the system.
8.
 Resume product_on_pallet transfer within the transport system
(allow OH transitions in the system).
In case of local storage depletion, the OH waiting to enter the
robot station with exhausted storage will be either delayed if the
resource is critical or rescheduled to another resource disposing of
the missing component and able to perform the current operation.
In such a situation, two actions take place:
1.
 One Supply Holon (SH) is created by the GSP, by specifying the
type and number of parts to be retrieved, the supply source (a
central cell storage tended by a SCARA robot under visual
guidance), and the restoring destination (the exhausted local
robot storage). The SH is immediately started.
2.
 From the nwip OH currently in execution, nd will be delayed
until the empty storage, which is critical for certain of their
mounting operations, is restored and nwip

00 ¼ nwip�nd OH will
be rescheduled by the holonic bidding mechanism (HBM) to
robots disposing of necessary assembly parts.
3.
 A lock is put on the system, and no further OH (new pallets) is
introduced in the system until the last one of the nd delayed
OH is completed and exits the system. When both the SH and
all nd OH are terminated, the lock is suspended and the
remaining OH are introduced in the system in packets of nwip,
their rescheduling being not necessary.
It might happen that a failed robot gets fixed before the current
manufacturing cycle is finished. In this recovery case, the cell
regained the ability to run at full capacity but the lined up orders
do not make use of this fact, as they are managed by the system in
a degraded mode. The procedure of rescheduling back the Order
Holons is virtually identical to the one used in case of failure; the
main difference is that none of the products_on_pallets being
currently processed need to be evacuated since there is no reason
to assume they could not be completed. Any orders that were
marked as failed due to resource unavailability are now untagged
and included in the APO list for scheduling as the may
be manufactured again due to resource recovery (Lastra and
Delamerm, 2006; Leitao et al., 2007).

The system is agile to changes occurring in production orders
too, i.e. manages rush orders received as new batch requests from
the ERP level while executing an already scheduled batch
production (a sequence of Order Holons).
Because of the similarities between a task run on a processor
and a batch of orders executed in a manufacturing cell (both are
preemptive, independent of other tasks or batches, have a release,
a delivery date and an fixed or limited interval in which they are
processed), it was decided to use the Earliest Deadline First (EDF)
procedure to schedule new batches (rush orders) for the robotized
assembly cell.

Earliest Deadline First (EDF) is a dynamic scheduling algorithm
generally used in real-time operating systems for scheduling
periodic tasks on resources, e.g. processors (Sha et al., 2004, Lipari,
2005). It works by assigning a unique priority to each task, the
priority being inversely proportional to its absolute deadline and
then placing the task in an ordered queue. Whenever a scheduling
event occurs the queue will be searched for the task closest to its
deadline. A feasibility test for the analisys of EDF scheduling was
presented in Liu and Layland (1973); the test showed that under
the following assumptions: (A1) all tasks are periodic, indepen-
dent and fully preemptive; (A2) all tasks are released at the
begining of the period and have deadlines equal to their period;
(A3) all tasks have a fixed computation time or a fixed upper
bound which is less or equal to their period; (A4) no task can
voluntarily stop itself; (A5) all overheads are assumed to
be 0; (A6) there is only one processor, a set of n periodic tasks
can be scheduled if

Pn
i¼1Ci=Tip1; n ¼ number of tasks;Ci ¼

execution time; Ti ¼ cycle time, or, in other words, if the
utilization of the processor (resource) is less than 100%.

A batch or Aggregate Product Order (APO) list is composed of
raw orders (list of products to be manufactured); this is why two
different batches are independent. Nevertheless, there is a
difference between a task and a batch of products: a task is
periodic while a batch is generally aperiodic. This means that
insted of testing the feasibility of assigning batches to the
production system considering the equation above, one can use
the following test: ‘‘for an ordered queue (based on delivery date)
of n batches with computed makespans, if

Pi
j¼1makespanj

pdelivery_datei; i ¼ 1;n, then the batches can be assigned to
the production cell using EDF without passing over the delivery
dates, Tanaya et al., 1995’’.

This EDF approach is used to insert rush orders in a production
already scheduled by the GPS; the steps below are carried out for
inserting a new production batch (rush order) during the
execution of a previously created sequence of Order Holons (see
Fig. 10):
0.
 Compute the remaining time for finishing the rest of the
current batch (if necessary).
1.
 Insert new production data: product types, quantities, delivery
dates.
2.
 Separate products according to their delivery date.

3.
 Form the entities ‘‘production batches’’ (a production batch is

composed of all the products having the same delivery date).

4.
 Generate raw orders inside the production batches (APO lists).

5.
 Schedule the raw orders (using a GPS algorithm, e.g. KBS or

Step Scheduler), compute the makespan and test if the inserted
batch can be done (the makespan is smaller than the time
interval to delivery date if production starts now).
6.
 Analyze the possibility of allocating the batches to the
manufacturing cell using the Earliest Deadline First procedure
and second equation for feasibility test.
7.
 Allocate the batches on the real-production system according
to the EDF procedure.
8.
 Resume execution process with new scheduled Order Holons.
In this mechanism for the management of changes in produc-
tion orders, an inserted batch is a batch that arrives while another
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Fig. 10. Add rush order diagram and integration with dynamic job rescheduling based on CNP negotiation (monex).

Table 1
The minimal structure of a batch holon.

Type Name Description

string batch_name Name or index of the batch

Date Delivery_date Delivery date of the orders

Product[ ] requested_products Vector containing the products to be

executed

Resource[ ] used_resources Vector containing the configuration

used for current batch planning

Order[ ] orders_to_execute Vector containing the entities OH

already scheduled using a specified cell

structure (defined by the variable

used_resources)

int makespan The time interval needed for the current

batch to be executed if started now and

not interrupted (it is a result of

scheduling)
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one is in execution. A monitored batch is one whose orders are
scheduled and assigned to the cell (it has a priority and is waiting
to enter execution). A current batch is in execution.

The capability of adding rush orders to production needs a new
entity, the batch. In this way job scheduling is done at batch level
(all orders with the same delivery date are scheduled together)
and then batches are assigned to the cell according to their
delivery date, using the EDF procedure (Table 1).

Because the process of batch execution is interruptible
(preemptive system), new batches (rush orders) can be introduced
exactly at the moment of their arrival. The insertion process is
triggered by the arrival of a ‘‘new order’’ event; a real-time acceptance
response can be provided (via the ERP level) to the customer if the
rush order can be executed by the requersted delivery date.

5. Fault-tolerant integration of the distributed control system

The distributed control system uses an entity coordinating
Order Holon execution, agentified as a Resource Holon—a
Programmable Logic Controller (PLC), which controls the state
transitions of OH by controlling the routes of products_on_pallets

inserted in the manufacturing cell in packets of nwipp5. The PLC is
the hardware counterpart of the cell conveyor control; to correctly
control the devices of the transportation system (motors,
stoppers, elevators, diverters) for product routing, an efficient
way to identify and track products_on_pallets was conceived: each
pallet has its own, unique code written on a magnetic device
placed on the pallet carrier; this code is read in decision-taking
locations on the conveyor (in pallet carrier diverting points) by
reading devices connected to the PLC.

The PLC is thus able to locate in permanence the products
within the production cell and, by checking these locations
against the scheduled destinations (resource workplaces assigned
for each operation), issues the appropriate commands to route
products. The PLC maintains the background and ultimate
interrogations about the status of resources (robots), and conse-
quently validates the OH state transitions.

A cell server holds permanently the list of Order Holons,
update by pipelined GPS (hierarchical) and CNP negotiation
(heterarchical); this list is mapped in a standard file set containing
256 arrays (which correspond to max. 256 pallets in one batch)
each one consisting of 16 structures (a product_on_pallet supports
maximum 16 operations):

Pallets_array: ARRAY [0..255,1..16] OF PalletData;
PalletData is the base structure of information about an

operation that will be done on a product at a robot station and
has the following components:

TYPE PalletData:

STRUCT

station: BYTE; (*number of station where the

operation will take place*)

operation: BYTE; (*operation type*)

timemin: WORD; (*min. duration of the operation*)

timemax: WORD;(* max. duration of the operation

*)
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report: BYTE; (*a coded byte indicating how was

executed the operation

ok, failed, etc*) END_STRUCT
END_TYPE

These values can be modified anytime at failure/recovery or
change-triggered rescheduling. The cell server also sends the PLC
a time variables array, representing the suggested time (computed
by the GPS) of inserting each pallet in the conveyor: time_

insertion_array[0..255]: word

An important element in the PLC software project is a 256-item
array index_array; each item is associated with the product_

on_pallet (OH) having as binary code the index of this item
in the array. The value of this item is the index of the next
operation to be performed on the associated product_on_

pallet:
Index_array: ARRAY [0..255] OF BYTE;
A complex PLC project was developed in Indralogic, consisting

of visual interfaces, Sequential Function Chart and Structured Text
programs for execution and tracking of the OH sequence. As
several independent processes have to be controlled by a single
PLC, the best solution is to separately control each execution
device (actuators, valves, etc.) by means of a single logical control
diagram. The synchronization between logical diagrams is made
by global variables.

The holonic manufacturing control software is distributed on
several processors, grouped as follows:
1.
 Management of changes in production orders:
� Cell server (IBM xSeries 3500 in the project): mix and order

by delivery date inserted, monitored and current batches,
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Fig. 11. Fault-tolerant distributed control an
perform Global Production Scheduling at global batch

horizon using Expertise Holons in KBS and the Dynamic
Cell Simulator in Step Scheduler, create Order Holons and
Supply Holons using information provided by Product
Holons and Resource Holons;
� Station Computers (IBM PC workstations in the project) SCi,

1pipr: participate in the contract-based negotiation for
the jobs offered by (at least) the nwip products in execution,
in the process of rescheduling at packet horizon when
resource failure or storage exhaustion occurs.
i

, 

d co
2.
 Execution and monitoring of Order Holons:
� Cell PLC (Bosch in the project): controls the cell conveyor

for product routing and interrogates processing resources
(robots, machine tools, storages) for their availability;
� Station Controllers (Adept in the project) RCi, 1pipr: run

programs for product operations.
The holonic control can be configured from totally hierarchical
(INTðP=nwipÞ þ 1 packets of products are optimally scheduled by
the GSP and 1 packet is negotiated by valid resources in case
of failure) to totally heterarchical (all INTðP=nwipÞ þ 1 packets of
nwip ¼ 5 products are negotiated).

The control and communication structure is fault tolerant
(Fig. 11).

The Cell Server and PLC, which are SPOF, will be hardware
backup-ed. The Robot Controllers have multiple communication
facilities; their integration in the manufacturing control system
allows fault-tolerant communication, because:
�
 Station Computers are connected to Station (Robot) Controllers
via a SC server—RC client Switched Ethernet Network.
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mmunication architecture.
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�
 The failure of a SC is detected by monitoring via the direct serial

links SCi–RCi and determines in consequence the rescheduling
of jobs for the (r�1) remaining valid RCj, 1pjpr, jai.

�
 If one of the Station Computers is down, its role is taken over

by one of the remaining (r�1) workstations, as each SC
database is replicated and updated on-line in all the other
(r�1) ones.

�
 If the switch is down, the communication between the SC

(or PLC) and the RC clusters still operates via the direct links

SCi–RCi and the Ring RC link.

�

Fig. 13. Inserting new batches among executing ones with the EDF algorithm.
High-speed, real-time operation synchronizing between pro-
cess and transport resources is done by a cross-connection I/O

network.

6. Experimental results and conclusions

The distributed control solution was implemented, tested and
validated on a real manufacturing structure with industrial
assembly robots and 4-axis CNC milling machines, using the
holonic approach. This development platform was recently put in
place in the Centre of Research in Robotics and CIM within the
University Politehnica of Bucharest (Fig. 12).

The described holonic implementation framework allows
networking equipment from different producers. The cost of the
development platform is directly reflected in its high-precision
performances, integrated inspection services, relaxation of mate-
rial presenting constraints, fixture simplification and manage-
ment of changes.

The control is structure is fully operational, both in the normal
hierarchical mode and upon switching automatically to the
heterarchical one in response to rush order requests, part supply
and resource failures.

Production scheduling at batch level was implemented and
tested using the EDF method; Fig. 13 shows the results obtained
when two new batch orders T24 ¼ (4, 17) and T25 ¼ (1, 3) are
received at time T ¼ 2 after the execution of three planned
batches: T11 ¼ (2, 18), T12 ¼ (3, 20), T13 ¼ (7, 11) started. Here
Tij ¼ (m, dd) signifies the number (j) of the batch for which
execution was requested at date i; the batch has the makespan m

and due delivery date, dd (both expressed in time units).
An example of production definition at batch level for four

products (H-, U-, L- and C-type products) resulting from
assembling axes and T-, I-, L- and r-type components is given in
Fig. 14.

As can be seen, there are several types of operations to be
carried out in order to manufacture the four types of products:
machining (milling), mounting support axes, assembling parts
and visual inspecting.
Fig. 12. Layout of the physical manufacturing cell
For the experiments reported, the number of products
simultaneously in execution was limited to 5. Table 2 below
gives the production times resulting from the Step Scheduler RSRP
computation in two scenarios: (i) only H-type products; (ii) equal
number of H-, U-, L- and C-type of products within one of the four
batch sizes (batch sizes were 4, 20, 40 and 60 products):

The system’s behaviour was tested with good results at
storage depletion (less than 68 s to generate a SH and restore
the furthest local robot storage) and resource failure (SC,
switch and RC). Future research work will be directed towards
integrating the process control- and ERP areas through an
enhanced information management system based on the RFID
technology.

The general features of the proposed holonic implementing
framework facilitate, beyond the product assembling with
machined components, the development of any other discrete,
repetitive manufacturing applications. Feature like: decomposi-
tion of the production system into entities relative to the basic
areas specific to an enterprise (production, process and business),
description of the types of manufacturing entities and of the
communication protocols that take place between them, and the
decision scenarios during resource failure/recovery and stock
restoring are reusable.

From the algorithmic point of view, the proposed resolved
scheduling rate planner based on variable-timing simulation,
facing the NP complexity aspect of the batch scheduling
problem can be reused for any topology of the material
transportation system, due to its graph-type, object-oriented
description.
subject to the holonic control development.
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Assembly sequence  
H-product:

1. Mount axis 
2. Mount axis 
3. Mount axis 
4. Mount T  
5. Vision inspection 
6. Mount I 
7. Mill I 
8. Vision inspection 

Assembly sequence 
U-product:

1. Mount axis 
2. Mount axis 
3. Mount axis 
4. Mount L
5. Vision inspection 
6. Mount I 
7. Mill I 
8. Vision inspection 

Assembly sequence 
L-product:

1. Mount axis 
2. Mount axis 
3. Mount axis 
4. Mount I
5. Vision inspection 
6. Mount I 
7. Mill I 
8. Vision inspection 

Assembly sequence 
C-product:

1. Mount axis 
2. Mount axis 
3. Mount axis 
4. Mount r
5. Vision inspection 
6. Mount r 
7. Vision inspection 

Fig. 14. Example of production definition at batch level (assembly, machining and visual inspection tasks included).

Table 2
Production time for H-, U-, L- and C-type batches and resuming times at resource failure.

Batch size Production time [time units] Worst recovery time [time units]

H-type [RSRP/CNP] Equal number of H-, U-, L-, and C-type

[RSRP/CNP negotiation]

Alternate OH at [packet ¼ 5] level

(resource i failure: RiF)

New SH for restoring Local Storage i

(LSi) at depletion

4 684/734 663/687 6.4 (R1F) 97 (LS1)

20 2841/3112 2550/2712 6.5 (R2F) 112 (LS2)

40 5485/5962 4934/5288 6.8 (R3F) 136 (LS3)

60 8129/9089 7362/7902 6.5 (R4F) 83 (LS4)
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