

A PLC-based Implementing Framework

for Order Holon Execution in HMES

Theodor Borangiu, Nick Andrei Ivănescu, Andrei Roşu,

and Mihai Pârlea.

University Politehnica of Bucharest, spl. Independentei 313, Romania

Tel: +40 214029314; E-mail: borangiu@cimr.pub.ro, nik@cimr.pub.ro,

andrei@cimr.pub.ro, mihai.parlea@cimr.pub.ro

URL: http://www.cimr.pub.ro

Abstract. The paper describes a modern solution for controlling a complex

manufacturing cell, consisting of conveyors, robots, stoppers and other devices,

using a single programmable logical controller (PLC). A special array of data

structures is used to easily access and manage the pallets processed at the four

robotized stations of the cell. Also, high performance communication protocols are

implemented in order to allow PLC – Robot interaction, protocols that use both I/O

lines and TCP/IP.

Keywords. Intelligent manufacturing system, holonic manufacturing system, flexible

and reconfigurable manufacturing system, production activity control, supervisory

control, PLC.

1. Introduction

Traditional networked assembly structures have

either a hybrid or heterarchical architecture. The first

type allows data exchange and co-operation between

lower-level (robot) controllers. In this architecture, a

master initiates all the activities and then the

subordinates cooperate to perform them.

The second type of architecture is formed by a

group of independent entities, usually called agents,

that bid for orders based on their status and future

workload (Morel et al., 2003). The master-slave

relationship is dismissed and due to this decentralized

control architecture, the agents have a complete local

autonomy and the system is able to react promptly to

any event such as: resource failure, new customer

order etc (Rahimifard, 2004). Global batch

optimization it is however improbable, because the

execution of one order depends on the features of

other orders, and also the system’s performance is

unpredictable.

In order to face resource break-downs, job shop

assembly structures use networked robot controllers

with multiple-LAN communication facilities

allowing for production data saving and automatic re

planning of batch production by help of failure and

recovery management (Babiceanu et al., 2007).

The manufacturing cell in which this project was

implemented consists of six robots and a conveyor

system. The robots are able to communicate with the

PLC by the means of digital Input/Output lines and

also by the means of Ethernet TCP/IP, being able to

exchange information about their status and

information regarding the manufacturing process of

the pallet that is in the post. One Cartesian robot is

used for inserting pallets in the system. The stoppers

existent in the system can block or not the movement

of the pallets on the conveyors, four of them being

related to code-read sensor and other two to a

read/write code sensor heads. Lifts have the task of

transferring the pallets from one main conveyor belt

to another or from the main conveyor loop to the

robot conveyor belts that take the pallet to the

working stations. The conveyor system is controlled

by a PLC that enables all mechanical actions to be

taken in the transport system (Lastra and Delamerm,

2006).

The PLC, as seen in Fig 1, is the core component

of the entire cell. It has to take the data necessary for

production from a planner. Then needs to control al

the mechanical elements of the transport system, has

to monitor and track pallets throughout the system by

the means of an identification system and finally to

communicate and give commands to the executing

robots.

Pallets enter the system having the possibility of

being written with a unique magnetic-code for

identification during the process. Each pallet,

according to a previous planned production, stops at

one or more working stations in order to have the

operations done. Once all operations are complete,

the pallet exits the system. The maximum number of

pallets that can enter the system, for a batch, is 256,

limited by the eight bits available for the magnetic

code. For practical reasons, each pallet can support a

total of 16 operations. An offline planner has to

create an optimal schedule by maximizing the load of

all available machines.

Figure 1 – The main configuration

When the products enter the system their memory

capsule is written with their unique code for

identification throughout the production of the batch.

The products are then transported to the next working

station by advancing on the main conveyor loop. At

the five locations where they can be deviated there

are sensors that identify the unique code, and

according to the data received from the planner will

take the actions for the deviation if necessary.

The robots present in the manufacturing system

should have a minimum of idle time, although in

some particular cases some of the robots may not be

involved. For achieving a maximum load, the

conveyor system should never be blocked by any

product that is waiting to be processed by a robot. If

the transport system is not overloaded, the robot

station can always be reached without waiting times

and can always carry out a task.

Some constraints are applied to the system:

- at any time in the system there can be no

more then 4 products.

- the products coming out of a post have

priority over the ones moving on the main

conveyor.

2. Solution design and PLC-based

implementing of order holon

2.1. Theoretical backgrounds
When dealing with complex systems having a big

number of input and output signals having to be

controlled by a single PLC, a modern solution for

software design must take into consideration the

following issues:

PLC must be chosen such as to support advanced

software development kit, containing most of the

standard programming languages for PLC’s, like

Sequential Function Chart (SFC), Ladder Diagram

(LD) or Structure Text (ST)

The project should contain both graphical

sequential programs and cyclic programs (for actions

needed to be performed at every PLC cycle)

In most of the cases the project should contain

several programs that will run simultaneously, every

program managing usually one action device (like

relays, actuators and so on) or managing other

activities like communication or timing management.

The idea is not to use a centralized type of

control, with one big “parent” program trying to

implement all the actions, but to use several smaller

programs, communicating between each other by

global variables, each one taking care of a small part

of the process.

2.2. Project structure
Following the guidelines previously described, a

Bosch PLC together with Indralogic development

software was used to accomplish the task. The

project’s structure is shown in fig. 2. The project

consists of 34 programs and 3 functions. All these

can be divided into 9 categories:

- Stopper

- Lift

- Transfer

- Communication with Robot (I/O)

- TCP data send to Robot

- Write Code on Product

- Time Keeper

- User Interface

- OPC Communication

The “Stopper” type program has as objective the

control of the mechanical device with the same name.

Its function is to stop verify that if the next segment

where the product needs to go is available or not, and

activate or not the stopper. Also the program has to

deviate the product towards the working station of a

robot if necessary.

The “Lift” type program has as objective the

control of the mechanical device with the same name.

Its function is to lift the product from the level of the

main conveyor belts to the level of the lateral

conveyors of each robot working post. Once the

product has reached the working place the program

signals the robot for the beginning of the necessary

operation.

The “Transfer” type program must control a

double lift and the preceding stopper, its function

being to transfer the product from one main conveyor

belt to the other.

The “Communication with Robot” type program

implements a query protocol over the digital

input/output lines for all the resource controllers and

has to decide whether the controller is working

properly and to communicate the status.

The “TCP data send to Robot” type program has

to send over the Ethernet a request for a job to a robot

working station and must wait for the answer using

the three functions for the TCP communication.

The “Write Code on Product” type program has to

write the unique identification code on the product

memory capsule. The code is 8 bits long and in order

for it to be valid the binary one’s complement must

be written at the next two memory addresses.

The “Time Keeper” type program must

increment, with a step of 500ms, an integer variable

that can communicate the time of production. As a

second function, the program must reinitialize the

system when a batch is finished.

The “User Interface” type program has to control

some of the graphical user interface elements, and to

show the data in the system in a easy to understand

format.

The “OPC Communication” type program must

control the data flow from the planner to the transport

system.

One of the issues in solving the transport system

control problem was the entry. Due to the fact that

products enter the system at different time stamps,

and other may need to be transferred from one main

conveyor belt to the other, some kind of interblocking

must be implemented. The first solution one might

take in account is a simple TAS (Test And Set). The

product that needs to enter the system tests to see if

the transfer is clear, signals the other products

interested that the region has been occupied by

setting a variable, and takes the necessary mechanical

actions to make the product enter the system and

when it has finished resets the variable, clearing the

transfer. If by any chance the two products make the

test in the same time then they are both going to

occupy the transfer and a crash is possible. The

solution is to prior test the sensors that detect the

products and give priority to the one that needs to be

transferred, because it must reach another working

post.

When one product is exiting a working post and

another product that is on the main conveyor would

like to cross to the next point, then a priority

management must be implemented. It was decided

that the exiting product has a higher priority then the

products on the main conveyor loops.

Another special issue is accessing the data

structure. In order to have an easier access to the data

it was decided to use an array that points to the next

operation that the product must bear.

The application has to convert the data coming

from the planner that it is used (unlike a product

driven approach (Petin et al., 2007)) into mechanical

movements of its constituent elements and, the first

step in solving the control problem is to choose the

way in which this data is stored (Borangiu et al.,

2008). Having taken into account the way a product

is developed it was decided to use this structure:
TYPE datemasina :

STRUCT

 post:BYTE; (*number of the robot

working post*)

 operatie:BYTE;(* a code repre-

senting the operation done at this

post*)

 timpmin:WORD;(*the minimum amount

of time necessary for completion *)

 timpmax:WORD;(*maximum amount of

time for completion of the operation*)

 raport:BYTE;(*a small report

about the result of the operation*)

END_STRUCT

END_TYPE

This structure is repeated for each operation that

the product has to pass and these structured compose

an array named “sir_palete”. It was decided that 16

structures are sufficient to completely describe a

product and due to limitations of the system there can

be no more then 256 products in one batch, these

being the reasons why “sir_palete” was defined as an

array of 256 by 16 structures of type “datemasina”. In

order to have access to the data in the array one needs

two indexes: the first index is the product number (0-

255) and the second is the number of operation (1-

16). The array named “sir_index” has a length of 256

fields each of them being the operation index reached

for the corresponding product.

The data structure necessary for the information

regarding the production is very large 256 (products)

x 16 (operations) x 5 (elements in a structure) =

20480 items and the limit imposed by the OPC

standard is 15000 (1,5 Mb). For this reason it was

decided to send one product at a time over the OPC,

meaning 16 structures of 5 elements. For the control

of the communication another two elements were

necessary one that determines the kind of action

(read/write) and another for synchronizing the

planner and the PLC.

post1: BYTE;

 operatie1: BYTE;

 timpmin1: WORD;

 timpmax1: WORD;

 raport1: BYTE;

post2: BYTE;

 operatie2: BYTE;

 timpmin3: WORD;

 timpmax3: WORD;

 raport3: BYTE;

…………………..

post16: BYTE;

 operatie16: BYTE;

 timpmin16: WORD;

 timpmax16: WORD;

 raport16: BYTE;

In order to write these in the PLC the planner

must first write in the synchronization variable the

code of the product for which the structures are valid

and then give the write command. After 256 cycles

the whole structure is written. Accompanying this

data is also a string that shows the moment of time

the product should enter the system. These are kept in

an array “time_insertion”.

Figure 2 – PLC Communication Interfaces

3. PLC - Robot Communication

The PLC is the key element of the cell because it

is the central node that facilitates the communication

between all holons involved and has the task of

executing the transport operations involved.

So, the communication between PLC and Robots

is based on a dialog type model. According to this

model, any communication protocol is initiated by

the PLC, the Robot executes the orders and answers

only in the mode depicted by the protocols.

Any communication protocols that will be

implemented will have three main tasks:

• to monitor the robot’s online / offline status

• to coordinate the robot task execution

• to transmit the codes corresponding to the

requested job and complementary execution

report

In order to implement such protocols, we have

two communication interfaces at our disposal: I/O

lines and TCP/IP (see Fig. 2).

The I/O lines are direct links between each robot

and the PLC. These are binary lines of industrial

24VCC level, perfect for signaling different states

and launching operations. On the other side, these

lines have a high cost and are not very well suited to

transmit data (through an eventual parallel protocol).

The PLC and all the Robots are connected to a

Switch through the TCP/IP interface, so that data

packages can be sent / received directly, the TCP/IP

protocol being in charge of correct package routing.

Although we are using shielded cables and the

TCP/IP interfaces implemented in the PLC and Robot

Controllers are of high quality, this protocol was not

created to be of industrial use. So, this interface must

be implemented with great care and only for data

transmission.

Considering the existing requirements and the

available communication interfaces, two protocols

will be implemented:

• Ping – this protocol detects the online /

offline status of the robots

• Synchronization – this protocol implements

the robot task execution

3.1. Ping Protocol

Since it is of the upmost importance to know

which robots are online and when a robot changes it’s

online / offline status, a protocol is implemented in

order to provide this information (Barata and

Camarinha, 2000). Because of the high redundancy

required by this protocol, it uses only the I/O lines.

The lines used by this protocol are:

• PLC → Controller

o Request Status

� request the Controller to

signal that he is online

• Controller → PLC

o Acknowledge Status

� answer from the

Controller

3.2. Synchronization protocol

This protocol must implement both PLC – Robot

synchronization and job / complementary report

codes transmission. So, it is necessary to use both I/O

lines and TCP/IP interfaces:

• PLC → Controller

o Request_Job

� signals the Controller that

the PLC wants a job to be

executed

o Pallet_In_Position

� signals the Controller that

the PLC has brought the

pallet in the working

position and that job

execution can be

commenced

• Controller → PLC

o Ready

� signals the PLC that a job

is in execution

o Job_Done

� signals the PLC that the

current job has been

executed

• Bidirectional (PLC ↔ Controller)

o TCP/IP

PLC transmits the job code, the Controller

transmits job acceptance report and (if the job was

accepted), transmits job execution report upon job

completion.

The protocol runs as follows:

• the PLC detects that Ready is 0 so it sets

Request_Job to 1 and transmits the job

code over TCP/IP

• the Controller reads the TCP/IP code and

evaluates if it can execute the job; if he

can execute the job then it will send the

job acceptance code, if not it will send a

job reject code; if the job is rejected then

communication stops (we assume that the

job is accepted)

• the PLC brings the pallet in the working

position and sets Pellet_In_Position to 1

• the Controller sets Ready to 1 (the PLC

sets Request_Job to 0) and begins

executing the job

• upon job execution, the Controller sets

Job_Done to 1, Ready to 0, and sends the

job completion report over TCP/IP

• the PLC takes the pallet, sets

Pellet_In_Position to 0, the Controller sets

Job_Done to 0 and is ready to

recommence the protocol

The protocol’s evolution over time is also

presented in Fig. 3.

Fig. 3 – Communication signals

The three time intervals presented in Fig.3 stand

for:

• T1 – interrogation time of part supply and/or

workstation equipments in order to reach to

a job acceptance / rejection conclusion

• T2 – pallet transportation time from the

main conveyor to the workstation

• T3 – job execution time

4. Multi-tasking control of a working

station

The robot controller features a multitasking

industrial processor. Just like any other multitasking

processor, this processor can execute a single task at

any given time, but all tasks take alternatively control

of the processor for very short periods of time, thus

creating the impression that all tasks are running

simultaneously. In order to decide which task

deserves to run next on the processor, processing

time is divided in a major time slices, each of these

being 16ms long. Every major slice is divided in 16

equal minor slices. Each system or user task has a

priority (ranging from -1 (do not run) to 63

(maximum)) assigned for each slice. At the beginning

of each minor slice, the processor makes a list of

ready to run tasks and assigns control over the

processor to the task with the highest priority, when

this task finishes running, priority is assigned to the

next task and so on until all tasks run or the slice

ends.

Because (without an additional license) the

number of user tasks is restricted to seven, we tried to

use the least number of tasks possible in order to

implement the communication protocols. This way,

we leave the maximum number of free tasks; these

tasks will be used for future development and for

controlling other workstation equipment.

Fig. 4 – Synchronization protocol

An essential request is for the Controller is that

the communication protocols are not interrupted by

the robot failing various mounting operations.

It results that we need to occupy a minimum of

two tasks: one task for robot operations and one task

for the communication protocols.

From the controller’s point of view, the

Synchronization protocol implies the steps presented

in Fig. 4. Also, this protocol must be executed in

parallel with the Ping protocol on the same task. In

order to achieve this, a WHILE loop that repeats

infinitely is used, this loop executes first the Ping and

then the Synchronization protocol. In order to know

the current position of the Synchronization protocol

for each iteration, this position is stored in a variable.

At each iteration the variable is read so that the

correct stage of the protocol is run, if the protocol

steps to the next stage, then the variable is updated,

so that the next stage is run at the next iteration.

5. Conclusions

After a theoretical evaluation of the presented

concepts the conclusion was that they fulfill the

requirements needed for driving the manufacturing

cell.

Once implemented, it was concluded that the

concepts presented successfully fulfilled the task of

driving the production cell.

Production Started

0

100

200

300

400

500

600

700

1 2 3 4 5 6

Product

T
im

e
 [

s
]

Planned

Executed

Fig. 5 – Production Started times

Production Finished

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

Product

T
im

e
 [

s
]

Planned

Executed

Fig. 6 – Production Finished times

On implementing control of additional equipment

such as vision software, automatic feeding of bulk

parts, CNC control for drilling and milling, the

capacity of the multitasking structure to execute

additional tasks without interrupting the PLC

communication protocols was observed. Also, the

performance of using only two tasks (while leaving

five free tasks) was noted.

Once all the programming was done and the cell

was fully functional, we programmed the PLC to

report the start and finish time for each product, both

the planned and the executed value. The results can

be seen in Figs. 5 and 6. The conclusion is that,

although there are differences for the planned and

executed finish time (which will be addressed in

future activities), they are small compared to the

overall production time and that the system behaves

as expected.

6. Acknowledgments

This work was partially supported from the scientific

grant 146 / 2007 "Autonomous, intelligent robot-

vision platforms for product qualifying, sorting /

processing / packaging and quality inspection with

Service-Oriented, Feature-based HolonIc COntrol

aRchitecture – SOFHICOR" of the National Agency

of Scientific Research (ANCS).

7. References

Babiceanu, R.F. et al (2007). Framework for control

of automated material-handling systems using

holonic manufacturing approach, Int. J. Prod.

Res., 42, 17, Taylor & Francis, 3551-3564,

Barata, J. and L.M. Camarinha-Matos (2000). Shop

floor re engineering to support agility in

virtual enterprise environments, in E-Business

and Virtual Enterprises, Kluwer Academic

Publishers, London, 287-291.

Borangiu, Th., Gilbert, G., Ivanescu, N. and A. Rosu

(2008). Holonic Robot Control for Job Shop

Assembly by Dynamic Simulation, Proc. of

the 16
th

 Mediterranean Conference on Control

and Automation – MED'08, June 2008,

Ajaccio.

Lastra, J. and I. Delamerm (2006). Semantic web

services in factory automation: Fundamental

insights and research roadmap, IEEE Trans.

on Industrial Informatics, 2, 1-11.

Morel, G., Panetto, H., Zaremba, M., Mayer, F.,

2003. Manufacturing enterprise control and

management system engineering: Rationales

and open issues, IFAC Annual Reviews in

Control.

Pétin, J.-F. and G. Morel (2007). A product-driven

reconfigurable control for shop floor systems,

Studies in Informatics and Control, 16

Rahimifard, S., 2004. Semi-heterarchical production

planning structures in the support of team-

based manufacturing, International Journal of

Production Research, 42, 17, September 1,

3369-3382(14), Taylor and Francis Ltd.

