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Abstract. This paper describes a method for calibrating a 3D laser scanning device mounted 
on the wrist of a 6-DOF robot arm, by computing a tool transformation for the laser sensor 
reference frame. The calibration procedure involves scanning a spherical object fixed in the 
robot workspace, and it makes possible aligning many individual scans taken from different 
orientations. Another advantage of this approach is that further applications are made 
possible, such as using the laser sensor for accurate robot guidance and alignment. 
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1. Introduction 
 
This article presents a technique for calibrating a 2D 
laser profile sensor mounted on the arm of a 6-DOF 
robot arm in order to be able to reconstruct 3D 
models of existing parts from range data. An 
overview for the scanning system is presented in 
Fig. 1. This approach will consider that the laser 
probe is the tool used by the robot arm, and therefore 
it will compute a tool transformation so that all the 
contour data from the profile sensor can be expressed 
in the reference frame of the robot.  

 

Fig. 1. Overview of the laser scanning system 

 
 

 
In a previous paper (Borangiu et al., 2008a), there 
was presented a calibration method for the 7th degree 
of freedom of the scanning system, which is the 
rotary table holding the scanned part. However, it 
was assumed that the transformation matrix between 
the robot wrist and the laser probe is already known, 
which was not true in practice. This paper focuses on 
the method for determining the tool transformation 
for the laser sensor, which includes the orientation 
and the tool center point. 

The data from the laser sensor is a set of 
unorganized 2D points, which can be mapped to the 
3D reference frame of the laser sensor by considering 

0,=X 2dx=Y and .2dy=Z The scanned data has to 

be aligned into a common 3D reference frame, which 
is attached to the object of interest, and this is done 
using the alignment equation. This  equation pre-
multiplies the laser measurements with the following 
matrix equation: 
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where 0
6T  represents the direct kinematics of the 

robot arm (Spong, 2005), RT0 is the transform 

between the table and the robot, and 6
LT  (also called 

W
LT ) is the transform from the robot wrist to the field 

of view (FOV) of the sensor LLL ZYX (Fig. 2). 
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Fig. 2. Tool transformation for the laser probe. 
 
The direct kinematics function of the robot was 
considered ideal, and there are two transformation 
matrices that are determined using two calibration 
procedures: 

• robot – laser probe calibration 
• robot – rotary table calibration 

The calibration between the robot and the table was 
presented in detail in (Borangiu et al., 2008a), and  
this paper will only address the robot – laser probe 
calibration. 

The software which controls the laser probe has a 
calibration routine for the linear stages of the 
scanning system (X, Y and Z), which is performed 
using a tooling ball placed in the workspace, in a 
fixed, but not precisely known position. The laser 
sensor is translated over the tooling ball, scanning 
with a sweeping motion. The acquired data is then 
fitted to a sphere, and its center is computed and used 
for calibration. The sphere is placed in various 
locations in the field of view (FOV) of the laser 
probe; for determining the orientation of the FOV, 
at least 3 locations are needed. For better accuracy, a 
higher number of locations is used (by default 9), 
because the errors will be averaged, increasing the 
accuracy of the calibration. 

Aside from the orientation, this procedure, which 
is named ball matching, computes also the 
parameters for internal calibration of the sensor itself, 
which include the offsets between the two cameras, 
the scaling factor and also a nonlinear (quadratic) 
correction for the 3D data.  

This method of calibration does not compute the 
origin of the sensor reference frame; only its 
orientation is determined. However, because the 
implementation of this method is mature, stable and 
provides good results, the calibration process will not 

be rewritten from scratch; instead, the existing 
method will be reused. Therefore, the first step of the 
calibration will be executed using the existing ball 
matching method, but the calibration results will have 
a slightly different interpretation. A second 
calibration step will be necessary in order to 
determine the origin of the sensor, i.e. the cartesian 
offsets dx, dy and dz.  
 
2. Calibration equations 
 
The procedure for finding the TCP (tool center point)  
P = (xP; yP; zP) is presented by (Hallenberg, 2007). 
The user has to teach at least 3 robot locations, 

)()1( ... nLL , with 3≥n , by placing the tool tip in the 
same physical location, with different orientations. 
The method will find the point which has the same 
World coordinates, when expressed in the tool 
reference frames for the taught robot locations.  
The point P can be expressed in World reference 
frame using: 
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Since all points niP i
W :1,)( = , represent the same 

physical location, which is unknown to the 
calibration routine, the conditions for finding the tool 
center point P become: 
 

 jiPP j
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If 3 locations are taught, the point P can be can be 
computed by solving linear system bAx = . Eq (2)  
and (3) will be rewritten using homogeneous 
transforms as: 
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where )(iR  and )(iT  are the rotation and translation 

components of )(iL : 
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Decomposing the rotation and translation, Eq. (4) is 
rewritten as: 
 

 
















+
















=
















=
)(

)(

)(

)(

)(

)(

)(

i
L

i
L

i
L

P

P

P
i

i
W

i
W

i
W

W

z

y

x

z

y

x

R

z

y

x

P  (6) 



3 

Since WP is an unknown, but its value is not required 

in the calibration process, only  P = (xP; yP; zP) will 
be computed. Therefore, from Eq.(6) for 1=i , will 
be subtracted Eq.(6) for 2=i  and 3=i , multiplied 

by 0.5, in order to remove the WP term. The result is: 
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which is a 33× linear system in bAx = format.  
If the calibration is performed with more than 

three points, Eq. (3) can be solved in a least squares 
sense (Dumitrescu, 2006), or it can be regarded as a 
minimization problem. A possible quadratic criteria 
for minimization is: 
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where )var(a is the variance of a:  
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and ma  is the arithmetic mean of a. 

For the laser calibration problem, the 3≥n  robot 
locations are also taught using the ball matching 
method. If the ball is in the field of view, it will be 
seen as a circle having the radius less than or equal to 
the real radius R of the ball, and the circle will be in 
the YZ plane of the tool coordinate system. The 
center of the circle in YZ can be determined easily, 
but the X coordinate is not known, since the laser 
plane does not intersect the center of the ball. The 
ball matching method will perform a sweep on the X 
direction of the tool reference frame, from –R to +R 
with respect to the current position, and from the 
3D point cloud acquired, the center of the ball can be 
computed by a sphere fitting procedure (Fig. 3). 

 
Fig. 3. Sphere identification and fitting from 3D point 
cloud data. 

 
The sphere is fitted using the Riemann method, by 
projecting the data points on a 4D paraboloid, the 
result being a hyperplane. A similar method was 
presented in (Frühwirth et.al, 2003) for fitting a 

circle, and it was straightforward to extend the 
method for fitting the sphere. This method is 
advantageous because the hyperplane fitting problem 
is linear, and can be solved by well-known robust 
fitting methods based on weighted least squares (Fox, 
2002). The robust fitting method is iterative and 
slower than the classical least squares fitting 
technique, but the results (center and radius) are not 
affected by outliers in data.  

 
3. Simulation results 
 
The method for computing the tool center point from 
three or more robot locations taught with different 
orientations was simulated using ideal data affected 
by random Gaussian noise, employing a Monte Carlo 
approach for determining the standerd deviation of 
the estimation errors.  

The first test used three simulated robot locations, 
the first one being vertical and downlooking, the 
second being rotated around X with an angle α , and 
the third one rotated around Y with the same angle 
α . The position of the three taught locations was 
altered with a Gaussian noise  on each axis, having a 
standard deviation of  mm 1.0=σ , zero mean and 
zero cross-correlation. The orientation of the 
locations was not altered. 
 

 
Fig. 4. Estimated standard deviation of the translation 
errors in the tool transformation, for the three axes. 
 
The error function was considered the difference 
between the ideal and estimated position of the Tool 
transformation. The ideal position was chosen 
(60, 10, 200), which is very close to the actual 
(physical) position. Using the Monte Carlo approach, 
for each constant value of α , 200 tests were 
performed, from which the standard deviation of the 
error was estimated for each axis (X, Y and Z).  

The conclusion from this simulation is that the 
angle between the Z axes of any two robot locations 
used for calibration has to be higher than 45�, if only 
3 points are used, since for lower values the accuracy 
decreases rapidly, and for higher values there are no 
significant gains. Also, the error is biased, so the 
position on the Z axis has the least standard 
deviation. Further experiments revealed that the bias 
is heavily dependent on the set of orientations used 
for calibration, so a balanced solution should include 
more than 3 points, which cover the entire range of 
orientations which will be used in the application. 
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4. Experimental results 
 
The calibration routine has been implemented 
successfully on the scanning system, and it allows 
scanning the parts with any orientation of the laser 
sensor that can be achieved physically with the 
mechanical setup. The scanning procedure can be 
completed in two modes: 
 

• The laser probe follows a complex 3D path, 
changing simultaneously the position and 
orientation. 

• The laser probe follows a sequence of 
simple linear sweep motions (scan passes), 
keeping its orientation constant. The 
orientation is changed before beginning the 
next scan pass. 

 

          
(a)                           (b)                         (c) 

 

       
(d)                           (e)                         (f) 

 
Fig. 5. Reconstruction of a decorative object 
(a)  - photography; (b), (c), (d) – scans from different 
orientations; (e) – the scans merged into a single mesh; 
(f) – 3D surface model created using the Poisson filter in 
MeshLab. 
 
While the second approach is simpler to implement, 
the first method is more elegant, but also more 
complex, and it requires a very high absolute 
accuracy for the mechanical subsystem that moves 
the laser sensor. Since in the current setup, a vertical 
robot arm was used, and its kinematic structure has 
only rotary joints, the transformation to Cartesian 
space is performed using the direct and inverse 
kinematics routines. They are nonlinear functions, 

and may introduce nonlinear errors if the physical 
kinematic model of the robot has slightly different 
parameters, with respect to the nominal (ideal) 
values, and the calibration method presented in this 
paper does not account for nonlinearities.  Therefore, 
it is expected that the calibration method will be 
better suited to a Cartesian mechanical structure, such 
as a coordinate measurement machine (CMM) with a 
3-DOF spherical wrist.  

The best results were obtained using the second 
approach, with many scan passes, each pass 
maintaining constant orientation. The result of every 
scan pass is a point cloud, and the point clouds 
obtained from all the scan passes are already almost 
aligned, with very small differences, i.e. up to 0.5 
mm distance between two overlapping surfaces. 
These differences are corrected using the Iterative 
Closest Point (ICP) algorithm, and the method was 
successfully tested using the open-source mesh 
processing software MeshLab. An example of 
reconstruction of a small decorative object is 
presented in Fig. 5.  

While it is true that the alignment of individual 
meshes is still not perfect, it provides a good 
initialization for the ICP algorithm, very close to the 
optimal result, and the user is not required to 
manually align the meshes before executing the 
automatic alignment procedure.  
 
5. Other applications of the calibration method 
 
The calibration method presented in this paper has a 
much wider applicability in other tasks, different 
from 3D reconstruction using the laser scanner. For 
example, the laser probe can be used as a highly 
accurate distance sensor, which can be used for 
delicate tasks such as manipulating very small parts, 
or as a tool for teaching robot locations with high 
accuracy.  

The simplest application is learning a reference 
frame for a tilted plane on which the robot has to 
work. Instead of manually teaching at least 3 robot 
locations on the tilted plane, the laser sensor can be 
used as a distance sensor in order to teach the 
location with an automatic procedure.  

A more complex application involves 3D path 
following around a given workpiece, when the 3D 
data is not available. The 3D path is defined along an 
edge of the workpiece (e.g. Fig. 6), which can be 
identified by the laser sensor. The robot has to move 
a tool along the edge of the workpiece in order to 
perform various technological operations, such as 
sealant dispensing, edge deburring, or welding.  

After the user teaches the edge model into the 
vision software, the robot uses the laser sensor in 
order to automatically identify the 3D path, adjusting 
its position and orientation, and learning the 
trajectory with a resolution specified by the user, e.g. 
1 mm. After the trajectory is learned, since the tool 
transformation for the sensor is known, the locations 
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are expressed in the robot's reference frame. 
Therefore, the robot can use the tool specific to the 
technological operation needed, change the tool 
transformation matrix to the one for the physical tool, 
and replay the learned path with high accuracy. 

 

 
 
Fig. 6. Sample 3D path following problem. 

 
The 3D contour learning and following application is 
presented in detail in (Borangiu, 2009). 
 
6. Conclusions 
 
This article presented a calibration method for a 
wrist-mounted laser scanning probe, which is able to 
reconstruct 3D surfaces of existing objects by having 
a 6-DOF robot arm move the probe around the 
objects with different orientations. The method 
computes a tool transformation which moves the tool 
center point of the robot in the origin of the laser's 
field of view and aligns the axes of the wrist 
reference frame to the ones of the laser sensor, thus 
making possible for the data from the laser scanner to 
be expressed in the robot reference frame only by 
premultiplying it with the direct kinematics of the 
robot at the moment of the data acquisition. 
Having the tool center point in the origin of the 
reference frame, the position of the laser sensor in the 
workspace is also much easier to control, since the 
user can move the probe on its own axis, i.e. X is 
normal to the laser plane, and Y-Z define the laser 
plane, with positive Z approaching the scanned part. 
The rotations of the probe around the part can be 
performed either around the center of the laser's field 
of view, or around any point defined by the user, for 
example, the "center" of the data visible in the sensor. 
This is a big improvement to the usability of the 
scanning system, since the scanned part will remain 
visible while rotating the probe around it. 

Further applications with the laser sensor are possible 
using the tool transformation defined. For example, 
since the laser sensor can measure distances with 
very high accuracy (tens of micrometers or even 
micrometers for very short range devices), the sensor 
can be used for robot guidance in order to manipulate 
very small parts and to perform precise operations. 
Another possibility is to use the laser sensor for 
guiding the robot along a visible edge of an existing 
part, in order to learn and follow a complex 3D path, 
even if a CAD model for the part is not available. 
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