
LabView based control and simulation of a construction robot

1

LABVIEW BASED CONTROL AND
SIMULATION OF A CONSTRUCTION

ROBOT

Th. BORANGIU 1 F. D. ANTON1 S. ANTON1

Abstract: The paper describes a multiprocessor control system for
construction robots integrated in a SOA designed as a layered CAD – CAE
information structure. The motion control system addresses both the robot's
mobile carrier and the partially closed-loop arm of cylindrical type; their
motion control is embedded in a multiprocessor Motion Control system for
which programming library was developed. Experimental results concerning
the motion control of the 5-d.o.f. robot arm are reported.

Key words: Robot motion control, bricklaying robot, multiprocessor
systems, embedded real time systems, KB programming support.

1 University Politehnica of Bucharest, Department of Automatic Control and Industrial Informatics.

1. Introduction

The nowadays demand on the

manufacturing process in the building
industry is constantly rising to enable
competition for quality, standardization
and decrease of production costs. The
standardization is directly related both to
replication of construction procedures
(bricklaying, windows placing, application
of mortar on walls, finishing operations –
painting, polishing) and to increasing
working productivity. These two
objectives, subject to constraints of
efficient use of materials resources and
employment of workers, can be reached by
using robots in the most common,
monotonous, effort demanding building
operations – from which the most
representative is bricklaying for wall
elevation [4].

Rationalisation efforts in the construction

industry are more and more associated
with the attempt to create information
systems used to automate the building
processes. Up to now, automated solutions
are developed however in each case for
each special building process. The
repetition of development errors and the
increased training expenditure for the users
cause high development costs, which make
an economic application of the automation
systems often impossible. One possible
solution for the above problems is an open
and modular control for construction
robots based on embedded systems
operating in a Service Oriented
Architecture (SOA), which means:

• Using autonomous guided vehicles as
robotic arm carriers moving to pre
planned locations in the building site
[6], [3].

The 10th IFToMM International

Symposium on Science of Mechanisms
and Machines

SYROM’09

The 10th IFToMM International Symposium on Science of Mechanisms and Machines

2

• Using the robot arm in working
locations to perform various types of
operations: bricklaying, finishing, etc

• Using generic hardware modules
(general purpose mathematic
processors, motion controllers,
universal motion interfaces, remote
control and communication terminals)
to build up embedded modular robot
controllers adaptable to the working
tasks and environment, external
sensors, and material flow.

• Relying on open standard software
(Linux-based real time operating
system) and open solutions in software
system design: the basic software
system is created from a set of task-
oriented modules and library functions
such as: trajectory generator, motion
tracking, end-effector set up, mobile
platform navigator, inclination control,
range finder and odometry
localization, which are selected,
attached and combined according to
the set of particular services to be
provided in a construction application,
i.e. creating a Service Oriented
Architecture (SOA), [4].

• Using a Knowledge Based Technology
System (KBTS) to map technology
specifications into production data and
area robot work tasks and, by further
access to a construction materials data
base to automatically generate the
parameters of application programs
(base wall and brick stack locations,
offsets in stacks, motion and grasping
data (trajectory type, speed, pick
offsets).

Research in control systems for
construction robots is still seeking
feasibility solutions and possibilities of
large scale implementing, through
integration with KBTS and databases on
construction procedures and materials.

2. Robot functionality and operating
modes for construction tasks

Fig. 1 presents the global robot system

and its working environment with sensory
control. The mechanical robot arm is a 5-
d.o.f. partially closed-chain kinematic
structure (with parallel linkages) of
cylindrical type, carried by a 3-d.o.f.
mobile wheeled platform. The resulting 8-
d.o.f. mobile construction robot is able to
move on quasi-horizontal prepared floors,
and generates a 3.5 m-height workspace in
2D locations of the building site.

Fig. 1. The construction robot and its
environment

The inclination of the mobile platform
can be measured with inclinometers along
two orthogonal symmetry axes and
correspondingly corrected by means of a 4-
d.o.f. mechanism electrically driven by
four ac motors.

The mobile robot platform is a free-
ranging (non-guided) wheeled vehicle,
capable to avoid obstacles (e.g. brick
pallets, walls) in a structured environment;
its arm performs coordinated movements
either in the Cartesian space or in the 5-
dimension joint space automatically at
program execution or under manual
control. A PC-based operator console is
used both as teach pendant for robot point
learning and as robot terminal for
execution of monitor commands, program

LabView based control and simulation of a construction robot

3

editing, debugging, execution start-up and
monitoring.

The robot vehicle is a chassis with omni
directional wheels. Two wheels (in
diagonal locations) are driven by two
asynchronous motors and generate
respectively forward - backward
displacements (when control signals are
identical) and CW-CCW rotations (for
opposite control signals); the remaining
two are loose wheels – the angular
displacement of one loose wheel being
measured by an encoder. The third motor
of the mobile robot platform drives turns
simultaneously the four omni directional
wheels via a common transmission
mechanism.

In the most general situation, the
displacement of the guided robot vehicle to
a location within the building site is
performed as a sequence of straight line
displacements planned such that the
contact with brick stacks of known
location and dimension is avoided,
whereas the shortest path is followed [6].

For each individual path segment, the
four wheels of the robot's mobile platform
are first turned along the direction towards
the destination) point; then, the two
actuated wheels drives the robot vehicle
along this direction until the motion
program is completed. Brick pallets may
be placed everywhere in (known locations)
the building site; the robot will turn around
them to avoid collision and then resume its
planned path towards the destination.

Due to positioning errors of the robot
vehicle (wheel slipping, different friction
coefficients of the four omni directional
wheels), an accurate auto locating
procedure is started once the platform
stops. This procedure is executed with a
laser scanner mounted on the mobile
platform, and three reflectors disposed in
known locations 31,, ≤≤ iyx ii relative to
the reference frame),(00 yx of the
building site. A range finder receives the

distances 31, ≤≤ idi and computes by
triangulation the Cartesian location

RR , yx of the robot vehicle. For a
(prepared) horizontal floor the reflectors
are at the same height and are scanned by
the laser beam in a 360° planar sweep.

3. Modelling and embedded motion

control of robot arm

3.1. Geometric models of the robotic

arm

The robot arm mounted on the wheeled
platform is a 5-d.o.f. closed-chain
(parallelogram linkage CDEF) mechanical
structure of cylindrical type having the
joint variables vector

[]T
54321 θθθ= ddq . The point

connecting the linkages CD and CF can be
driven along two orthogonal (horizontal
and vertical) directions, described by the
joint variables 32 ,dd . This means that the
motion of point G is amplified by

1l)/l(Lk ≥+= with respect to the motion
of point C (Fig. 2). The end-effector wrist
G is capable of two degrees of mobility:
pitch (4θ) and roll (5θ).

Fig. 2. The closed-chain kinematic

structure of the 5-d.o.f. cylindrical robot
manipulator

Due to its closed structure, the Denavit-
Hartenberg formalism and Luh-Paul-
Walker Algorithm for Local Coordinate
System Allocation cannot be used to get

The 10th IFToMM International Symposium on Science of Mechanisms and Machines

4

the implicit Direct Kinematics arm model,
DKI. Due to this, a pure geometric
approach was used to obtain the direct
model: the location of an orthogonal frame
is successively moved in important points
of the arm structure, until the end-tip
location P is reached. The DKI model is
computed in two stages:

DK position model:

() []T54321 θ,θ,,θ HHH ZYX,ddPos →

()

()






























+=

−+=

−+=

2

θ
2sin-1βsin

γθβcoscos

γθβsincos

5

1

1

gZZ

gYY

gXX

HP

HP

HP

, (1)

where
()

()
GGkdZ

HGkdY

HGkdX

H

H

H

′′−=
′′+=
′′+=

2

13

13

θcos

θsin

, k
l

Ll =+

()
3
3

2
2

2
3

2
2

24

dd

ddl
D

+
+−

= ,

()
l

dd

2
arccos

2
3

2
2

1

+
=α ,

2
3

2
2

3
2 arccos

dd

d

+
=α

()[]42434342 sincossincos
2

θ+θ+θ−θ=′′ ddddD
l

d
HG

()[]42434342 cossincossin-
2

θ−θ−θ+θ=′′ ddddD
l

d
HG

, 214 α−α〉θ

DK orientation model:

() 0
554321 ,,,t R→θθθ ,ddOrien

The implicit homogenous orientation
matrix 0

5R is derived below; its conversion
to rpy minimal format is done at run time
whenever relative transformations are used
to plan arm motion.



















β−β−β
β−β−−β−
β+β+−β

=

1000

0sinsincos

0coscossin

0coscossin

55

515151511

515151511

0
5 cs

ccsssccsc

csscssccs

R

where

11 sinθ=s , 11 cosθ=c , 55 sinθ=s , 55 cosθ=c

l

dd
ar

2
cos

2
3

2
2

1

+
=α ,

2
3

2
2

3
2 cos

dd

d
ar

+
=α ,

42190 θ+α+α−=β o
The closed-loop Solution of the Inverse

Kinematics problem is obtained using a
combined algebraic and geometric
computation [2]:

()





















=

=


















=

∗∗∗∗

∗∗∗∗

∗∗∗∗

1000

1000

θ,θ,θ

4
5

54321,
0
5

Pzzz

Pyyy

Pxxx

P

P

P

Zasn

Yasn

Xasn

Z

Y

X

,dd
R

T

(2)

() 0*
214

*

22

22

90ββ

2tanaβ

cosβ

sinβ

−β=α+α−θ⇒=









+=⇒

⇒







=

+=

*
y

*
x

*
z

*
z

*
y

*
x

nn,n

n

nn

*cos n=β
where

















+
−

+
=

∗∗

∗

∗∗

∗

2222
5 2tanθ

yx

z

yx

z

nn

s

nn

a
-a

()
















+

−

+

+
−=θ

2222
1 2tan

*
y

*
x

*
x

*
z

*
x

*
z

*
y

*
x

*
z

*
x

*
z

*
z

nn

ssaa
,

nn

aasn
a

LabView based control and simulation of a construction robot

5

()

()
k

Ll
d

k

Ll
d

21
3

21
2

0
21

*
4

cosαcosα2

sinαcosα2

90ααβθ

+
=

+
=

−−+=

,

() 12

1
*

1 cosθcosα2

cosθsinβ
cosα

Ll

dY
ar

*
H

+
−

=

where














+

−
= *

1

1
*

2 cosβ,
sinθ

sinθsinβ
2tanα dZ

dX
a *

H

*
H

() *
H

*
PH XgXX =−−= *

1
* χθsincosβ

() *

H
*
PH YgYY =−−= *

1
* χθcoscosβ

*
H

*
PH ZgZZ =







 −−=
2

θ
sin1sinsinβ 5*

where *
*
z

5 χ
n

/2sinθ
sinχ =












= ar

Bricklaying tasks assume not only pick-
and-place sequences, but also linear
Cartesian motions whem mortar is applied
to bricks held in the gripper.

Other construction tasks requiring the
execution of linear Cartesian pats of the
robot arm are: wall finishing, painting etc.
In addition, all locations of interest in CAD
files are specified in Cartesian coordinates
and directly mapped to robot points as
transformations relative to the world frame
(reference frame attached to the building
site) of the robot arm.

Consequently, the arm’s trajectories are
planified in the Cartesian space according
to the algorithm:

 0tt =
loop:

Wait new control period (sample) ;
Update the end-effector’s operational
trajectory planner)(tTP : computing the
necessary position and velocity data
{ })(),(),(),(tttt ωpp &φ in Cartesian
space at current time t ;

Compute the closed form inverse
kinematics solution in joint space,

)]([IK tTP , correspondong to)(tTP ;
IF finaltt = exit;

 ELSE go to loop.

The method consists in generating
support points by linear interpolation along
the imposed operational path, and adding a
desired speed profile. Then TP converts
then the Cartesian support points in joint
representations and feds them to the
trajectory tracking unit. The TP has been
implemented using the RMRC technique:

)())(()(1 ttt ccc xqJq δ=δ −
, where

)()()(1 kkc ttt qqq −=δ +

))(()(()(1OS kkdc ttt qdkxx −=δ +I

One can observe that both the
interpolation for support points and their
conversion from Cartesian to joint
representation are incremental, which
reduces the computation time and
increases the band width of the TP [1].

3.2 Embedded control of the

construction robot

Motion tracking is performed with dual
DSP-GPGA NI 735x motion controller
with PID and feed forward laws; for linear
Cartesian trajectories the contouring mode
is used, according to which the computed
joint-space support points are fed to a
reference buffer as a set of relative values
with respect to the initial point, followed
by cubic spline interpolation between them
subject to imposed speed and acceleration
constraints.

The robot controller is designed as a
multiprocessor structure, including four
interconnected processing areas (Fig. 3):
1. A real-time, embedded controller NI

PXI 8196 acting as a mathematical
processor for execution of application
programs, motion planning and

The 10th IFToMM International Symposium on Science of Mechanisms and Machines

6

trajectory generation t centralized
level):

• Planning motion of the robot arm
from trained or edited robot points
and specified path types, and of the
mobile vehicle by comparing site
maps with path specifications (for
collision avoidance with interior
walls or brick stacks);

• Generating linear Cartesian
trajectories of the arm and vehicle,
coordinate joint trajectories of the
arm, single-axis platform
displacements to compensate
deviations from horizontality;

• Locating the mobile vehicle by
triangulation from range finder data;

• Communication with the operator’s
console for data and program
transfer, diagnosis and production
reports.

2. Two NI 735x motion controllers
addressing three groups of coordinated
axes (group 1: 5 axes of the cylindrical
robot arm; group 2: 3 axes of the robot
vehicle; 4 axes of the platform
inclination mechanism):

• Slave status for motion tracking in
vector mode, i.e. coordinated motion

in groups of axes configured by the
PXI controller;

• Loop control and S-type speed
profile are embedded at motion
control level, with PID- (position and
speed) and feed forward control;

• Arm and platform calibration using
breakpoint modes (drive axis until
occurrence of external event – limit
switch);

• Monitoring encoders, limit switches,
external devices, protections and
sequencing commands

2. 12 motor servo drive boards (power
amplifiers) connected to the motion
controllers through universal motion
interfaces (UMI).

3. Operator console, acting both as robot
terminal and teach pendant – a laptop
wireless connected to the PXI real-time
embedded central processor.

The system applications were developed
differently: motion planning, kinematics
model computation and trajectory
generation are written as C++ routines,
whereas the set of motion tracking
routines: vector control (electronic
gearing) – for coordinated joints motion,
contouring – for traversing Cartesian
support points along linear trajectories or

Fig. 3. Industrial implementing of the multiprocessor robot controller

LabView based control and simulation of a construction robot

7

Fig. 4. Creating, converting and transferring motion control application code for MC
hardware units

breakpoint motion – for calibration were
developed as LabVIEW applications with
the NI LabVIEW Real-Time module, and
downloaded in the embedded real-time
PXI central controller via Ethernet.

The embedded code is run on a real-time,
multitasking operating system.

Fig. 4 shows the generic mechanism
used to create, convert and transfer the
application code to the hardware
processing modules. This mechanism is
based on integrated C support for
developing multi-platforms of Motion
Control type.

The system controlling the Windows
application code programming tools
(Visual C++ and LabVIEW) shares an
Application Programming Interface – API
with the Motion Control (MC) language.

The same software operations are in the
MC programming language and in the
function library, which simplifies program
migration and reduces adaptation times for
applications developed in different
languages.

The Real Time Operating System of the
robot controller is pre-emptive and re-
entrant, having the capability to execute
both on mono processor and
multiprocessor architectures, and
supporting Intel processors. The OS

architecture is modular and consists of two
main layers (Fig. 5):

• A user module (with limitations to
system resource access), and

• A kernel module, having unrestricted
access to the system's memory and
external devices.

The User module contains subsystems
capable to pass I/O requests to suitable
software drivers of the kernel module, by
using the I/O manager.

Two subsystems are on the user module

layer:

• The Environment subsystem (E_Ss)
executing applications written for
various types of OS,

• The Integral subsystem (I_Ss)
operates specific system functions
for the E_Ss.

The Executive interfaces and all
subsystems in the User module deal with
I/O, object management, security and
process management.

The hybrid Kernel is positioned between
the HAL (Hardware Abstraction Level)
and the Executive, in order to provide
multiprocessor synchronization, planning
and interrupt- and execution threads
resolution, as well as trap processing and

The 10th IFToMM International Symposium on Science of Mechanisms and Machines

8

Fig. 5. The architecture of the operating system (OS)

exception solving. The Kernel module
consists from executive services, in their
turn composed from several modules
performing specific tasks, kernel drivers, a
Microkernel and HAL (Hardware
Abstraction Level). HAL includes specific
code for hardware controlling I/O
interfaces, interrupt controllers and
multiple processors [5].

The Microkernel is responsible for driver
setup at the start moment. The drivers in
the Kernel module are on three layers:
high-, medium- and low level. Low level
drivers are either inheritance drivers
controlling directly a device, or busses for
the PnP hardware. The PnP Manager is
used to detect and initialize at system start
up the Plug and Play devices. Low level
drivers are either inheritance drivers

controlling directly a device, or busses for
the PnP hardware. The PnP Manager is
used to detect and initialize at system start
up the Plug and Play devices.

4. Experimental work. Conclusions

The reported research was carried out in
the framework of a National CEEX Grant
funded by the Ministry of Education and
Research, and aims to develop a robot
system and KBTS for automating
construction tasks (Fig 6).
On the test has been observed that the
positioning precision of the entire structure
is 0.2 mm due to mechanical movement
transmission, also the robot needs to move
using small accelerations and trapezoidal
speed profile, on high accelerations

LabView based control and simulation of a construction robot

9

/decelerations the mechanical structure
starts to vibrate.

Fig. 6. The construction robot

Another problem which we try to solve

is that the motors are commanded by two
different types of frequency converters
which give two different types of speed
control (Fig. 7.) (the KEB converters
seems to be more stable – green line, the
other converter is LS-600).

In Fig. 7. the internal PID loops of the
converters are disabled and is used

only the PID control loop of the NI
controllers.

Fig 8 shows simulation results of RMRC
motion control algorithms for linear paths
in the joint space of the robot arm. In the
left side is represented the Position/Time
characteristic, and in the right side is
presented the Speed/Time characteristic
(Red – KEB, White – LS600). Linear joint
space paths are done by the trajectory
generator and motion tracking processor
according to the “electronic gear”
algorithm below:
1. Start from two trained robot joint

configurations 5,4,321 ,, θθθ dd : initial ip

and final fp .

2. Compute the rotation/translation path
differences between each element of

fp and ip , as the difference array

∆∆∆∆∆ θθθ 54321 ,,,, dd .
3. Determine the axis maximum path

difference
),,,,(max 54321

51
∆∆∆∆∆

≤≤
θθθ=∆ ddq

i
i , (3)

corresponding to the master axis (MA)
motion for the current trajectory
segment.

4. Compute the gear ratio between the
maximum path difference and each
element of the difference array; the
gear array δδδδδ θθθ= 54321 ,,,, ddGA
results. This array will have one value

Fig. 7. Blending moves for two axes (position – left, and speed-right)

The 10th IFToMM International Symposium on Science of Mechanisms and Machines

10

Fig. 8. RMRC and electronic gear path control results

equal to 1 and the other values in the range
(-1, 1).
5. The positions of the five axes are

modified incrementally by adding the
values from the gear array multiplied
by a value obtained by dividing the
maximum difference to the resolution
of the motor mounted on this axis (the
other slave axes (SA) will have at least
the same resolution). The value of n in
the equation below incrementally
changes axes position along the linear
joint path:

GAoffsetposMAposSA

nqoffsetposMAposMA i

⋅−=
∆+−=

)_(_

/)_(_ (4)

6. Actions in step 5 are executed until the
difference between ip and fp is small

enough.

The parameters of the motion control
algorithms were tuned to provide 1 mm
worst error for Cartesian displacements
and 0.2 mm worst positioning error.

In Fig. 8 we can see the big difference
between the two converters; the LS-600
converter has problems in keeping the
constant speed. The position is reached,
but the speed has big variations which can
lead to problems when the robot is loaded
with high payload.

References

1. Borangiu, Th.: Task-Driven Control of

Robots Integrated in Intelligent
Manufacturing Systems, Proc. of 3rd
IFAC Workshop Intell. Manufact.
Syst. IMS'95, Oxford, Pergamon Press,
1995, p.79-89.

2. Borangiu, Th., Oltean E.: Multi-
Processor Design of Nonlinear Robust
Motion Control for Rigid Robots.
Lecture Notes In Computer Science,
1798, Springer Verlag, 1999, p. 224-
238.

3. Nehmzow, U.: Mobile Robotics: A
Practical Introduction, Springer,
London, 2003.

4. Pritschow, D., Kurz, J., Mc Cornack,
S.E., Dalacker M.: Practical Sensor
Strategies for On-Site Positioning of a
Mobile Bricklaying Robot, Proc. of the
13th ISARC Symposium, Tokyo,
Japan, 2006, p. 281-290.

5. Tourassis, V., Tourassis M., Ang M.:
Task Decoupling in Robot
Manipulators, Journal of Intell. and
Robotics Syst., 14, Kluwer, 1995, p.
283-302.

6. Zhao, Y.: Kinematics, Dynamics &
Control of Wheeled Mobile Robot,
Proc. IEEE Int. Conf. on Robotics and
Automation, Nice, 1992, p. 91-96.

