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Abstract: The paper describes a multiprocessor control system for 
construction robots integrated in a SOA designed as a layered CAD – CAE 
information structure. The motion control system addresses both the robot's 
mobile carrier and the partially closed-loop arm of cylindrical type; their 
motion control is embedded in a multiprocessor Motion Control system for 
which programming library was developed. Experimental results concerning 
the motion control of the 5-d.o.f. robot arm are reported. 
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1.  Introduction 
 
The nowadays demand on the 

manufacturing process in the building 
industry is constantly rising to enable 
competition for quality, standardization 
and decrease of production costs.  The 
standardization is directly related both to 
replication of construction procedures 
(bricklaying, windows placing, application 
of mortar on walls, finishing operations – 
painting, polishing) and to increasing 
working productivity. These two 
objectives, subject to constraints of 
efficient use of materials resources and 
employment of workers, can be reached by 
using robots in the most common, 
monotonous, effort demanding building 
operations – from which the most 
representative is bricklaying for wall 
elevation [4].  

Rationalisation efforts in the construction   

industry are more and more associated 
with the attempt to create information 
systems used to automate the building 
processes. Up to now, automated solutions 
are developed however in each case for 
each special building process. The 
repetition of development errors and the 
increased training expenditure for the users 
cause high development costs, which make 
an economic application of the automation 
systems often impossible. One possible 
solution for the above problems is an open 
and modular control for construction 
robots based on embedded systems 
operating in a Service Oriented 
Architecture (SOA), which means:  

• Using autonomous guided vehicles as 
robotic arm carriers moving to pre 
planned locations in the building site 
[6], [3]. 
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• Using the robot arm in working 
locations to perform various types of 
operations: bricklaying, finishing, etc  

• Using generic hardware modules 
(general purpose mathematic 
processors, motion controllers, 
universal motion interfaces, remote 
control and communication terminals) 
to build up embedded modular robot 
controllers adaptable to the working 
tasks and environment, external 
sensors, and material flow. 

• Relying on open standard software 
(Linux-based real time operating 
system) and open solutions in software 
system design: the basic software 
system is created from a set of task-
oriented modules and library functions 
such as: trajectory generator, motion 
tracking,  end-effector set up, mobile 
platform navigator, inclination control, 
range finder and odometry 
localization, which are selected, 
attached and combined according to 
the set of particular services to be 
provided in a construction application, 
i.e. creating a Service Oriented 
Architecture (SOA), [4]. 

• Using a Knowledge Based Technology 
System (KBTS) to map technology 
specifications into production data and 
area robot work tasks and,  by further 
access to a construction materials data 
base to automatically generate the 
parameters of application programs 
(base wall and brick stack locations, 
offsets in stacks, motion and grasping 
data (trajectory type, speed, pick 
offsets). 

Research in control systems for 
construction robots is still seeking 
feasibility solutions and possibilities of 
large scale implementing, through 
integration with KBTS and databases on 
construction procedures and materials. 
 

2.    Robot functionality and operating 
modes for construction tasks 

 
Fig. 1 presents the global robot system 

and its working environment with sensory 
control. The mechanical robot arm is a 5-
d.o.f. partially closed-chain kinematic 
structure (with parallel linkages) of 
cylindrical type, carried by a 3-d.o.f. 
mobile wheeled platform. The resulting 8-
d.o.f. mobile construction robot is able to 
move on quasi-horizontal prepared floors, 
and generates a 3.5 m-height workspace in 
2D locations of the building site. 
 

 
 

Fig. 1. The construction robot and its 
environment 

 

The inclination of the mobile platform 
can be measured with inclinometers along 
two orthogonal symmetry axes and 
correspondingly corrected by means of a 4-
d.o.f. mechanism electrically driven by 
four ac motors.  

The mobile robot platform is a free-
ranging (non-guided) wheeled vehicle, 
capable to avoid obstacles (e.g. brick 
pallets, walls) in a structured environment; 
its arm performs coordinated movements 
either in the Cartesian space or in the 5-
dimension joint space automatically at 
program execution or under manual 
control. A PC-based operator console is 
used both as teach pendant for robot point 
learning and as robot terminal for 
execution of monitor commands, program 
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editing, debugging, execution start-up and 
monitoring.  

The robot vehicle is a chassis with omni 
directional wheels. Two wheels (in 
diagonal locations) are driven by two 
asynchronous motors and generate 
respectively forward - backward 
displacements (when control signals are 
identical) and CW-CCW rotations (for 
opposite control signals); the remaining 
two are loose wheels – the angular 
displacement of one loose wheel being 
measured by an encoder. The third motor 
of the mobile robot platform drives turns 
simultaneously the four omni directional 
wheels via a common transmission 
mechanism.  

In the most general situation, the 
displacement of the guided robot vehicle to 
a location within the building site is 
performed as a sequence of straight line 
displacements planned such that the 
contact with brick stacks of known 
location and dimension is avoided, 
whereas the shortest path is followed [6]. 

For each individual path segment, the 
four wheels of the robot's mobile platform 
are first turned along the direction towards 
the destination) point; then, the two 
actuated wheels drives the robot vehicle 
along this direction until the motion 
program is completed. Brick pallets may 
be placed everywhere in (known locations) 
the building site; the robot will turn around 
them to avoid collision and then resume its 
planned path towards the destination. 

Due to positioning errors of the robot 
vehicle (wheel slipping, different friction 
coefficients of the four omni directional 
wheels), an accurate auto locating 
procedure is started once the platform 
stops. This procedure is executed with a 
laser scanner mounted on the mobile 
platform, and three reflectors disposed in 
known locations 31,, ≤≤ iyx ii relative to 
the reference frame ),( 00 yx  of the 
building site. A range finder receives the 

distances 31, ≤≤ idi and computes by 
triangulation the Cartesian location 

RR , yx of the robot vehicle. For a 
(prepared) horizontal floor the reflectors 
are at the same height and are scanned by 
the laser beam in a 360° planar sweep. 
 
3. Modelling and embedded motion 

control of robot arm 
 
3.1. Geometric models of the robotic 

arm 
 

The robot arm mounted on the wheeled 
platform is a 5-d.o.f. closed-chain 
(parallelogram linkage CDEF) mechanical 
structure of cylindrical type having the 
joint variables vector 

[ ]T
54321 θθθ= ddq . The point 

connecting the linkages CD and CF can be 
driven along two orthogonal (horizontal 
and vertical) directions, described by the 
joint variables 32 ,dd . This means that the 
motion of point G is amplified by 

1l)/l(Lk ≥+=  with respect to the motion 
of point C (Fig. 2). The end-effector wrist 
G is capable of two degrees of mobility: 
pitch ( 4θ ) and roll  ( 5θ ). 

 
Fig. 2. The closed-chain kinematic 

structure of the 5-d.o.f. cylindrical robot 
manipulator 

 

Due to its closed structure, the Denavit-
Hartenberg formalism and Luh-Paul-
Walker Algorithm for Local Coordinate 
System Allocation cannot be used to get 
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the implicit Direct Kinematics arm model, 
DKI. Due to this, a pure geometric 
approach was used to obtain the direct 
model: the location of an orthogonal frame 
is successively moved in important points 
of the arm structure, until the end-tip 
location P is reached.    The DKI model is 
computed in two stages:  

 
DK position model:  

( ) [ ]T54321 θ,θ,,θ HHH ZYX,ddPos →  
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DK orientation model:  

( ) 0
554321 ,,,t R→θθθ ,ddOrien  

The implicit homogenous orientation 
matrix 0

5R  is derived below; its conversion 
to rpy minimal format is done at run time 
whenever relative transformations are used 
to plan arm motion. 
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The closed-loop Solution of the Inverse 

Kinematics problem is obtained using a 
combined algebraic and geometric 
computation [2]:  
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Bricklaying tasks assume not only pick-
and-place sequences, but also linear 
Cartesian motions whem mortar is applied 
to bricks held in the gripper. 

Other construction tasks requiring the 
execution of linear Cartesian pats of the 
robot arm are: wall finishing, painting etc. 
In addition, all locations of interest in CAD 
files are specified in Cartesian coordinates 
and directly mapped to robot points as 
transformations relative to the world frame 
(reference frame attached to the building 
site) of the robot arm.  

Consequently, the arm’s trajectories are 
planified in the Cartesian space according 
to the algorithm:  

     0tt =  
loop: 

Wait new control period (sample) ; 
Update the end-effector’s operational 
trajectory planner )(tTP : computing the 
necessary position and velocity data 
{ })(),(),(),( tttt ωpp &φ  in Cartesian 
space at current time t ; 

Compute the closed form inverse 
kinematics solution in joint space, 

)]([IK tTP , correspondong to )(tTP ; 
IF   finaltt =  exit; 

     ELSE   go to  loop. 

The method consists in generating 
support points by linear interpolation along 
the imposed operational path, and adding a 
desired speed profile. Then TP converts 
then the Cartesian support points in joint  
representations and feds them to the 
trajectory tracking unit. The TP has been 
implemented using the RMRC technique:  

)())(()( 1 ttt ccc xqJq δ=δ −
, where 

)()()( 1 kkc ttt qqq −=δ +

))(()(()( 1OS kkdc ttt qdkxx −=δ +I  

One can observe that both the 
interpolation for support points and their 
conversion from Cartesian to joint 
representation are incremental, which 
reduces the computation time and 
increases the band width of the TP [1]. 

 
3.2 Embedded control of the 

construction robot 
 

Motion tracking is performed with dual 
DSP-GPGA NI 735x motion controller 
with PID and feed forward laws; for linear 
Cartesian trajectories the contouring mode 
is used, according to which the computed 
joint-space support points are fed to a 
reference buffer as a set of relative values 
with respect to the initial point, followed 
by cubic spline interpolation between them 
subject to imposed speed and acceleration 
constraints. 

The robot controller is designed as a 
multiprocessor structure, including four 
interconnected processing areas (Fig. 3): 
1. A real-time, embedded controller NI 

PXI 8196 acting as a mathematical 
processor for execution of application 
programs, motion planning and 
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trajectory generation t centralized 
level): 

• Planning motion of the robot arm 
from trained or edited robot points 
and specified path types, and of the 
mobile vehicle by comparing site 
maps with path specifications (for 
collision avoidance with interior 
walls or brick stacks); 

• Generating linear Cartesian 
trajectories of the arm and vehicle, 
coordinate joint trajectories of the 
arm, single-axis platform  
displacements to compensate 
deviations from horizontality; 

• Locating the mobile vehicle by 
triangulation from range finder data; 

• Communication with the operator’s 
console for data and program 
transfer, diagnosis and production 
reports. 

2. Two NI 735x motion controllers 
addressing three groups of coordinated 
axes (group 1: 5 axes of the cylindrical 
robot arm; group 2: 3 axes of the robot 
vehicle; 4 axes of the platform 
inclination mechanism): 

• Slave status for motion tracking in 
vector mode, i.e. coordinated motion 

in groups of axes configured by the 
PXI controller; 

• Loop control and S-type speed 
profile are embedded at motion 
control level, with PID- (position and 
speed) and feed forward control; 

• Arm and platform calibration using 
breakpoint modes (drive axis until 
occurrence of external event – limit 
switch); 

• Monitoring encoders, limit switches, 
external devices, protections and 
sequencing commands  

2. 12 motor servo drive boards (power 
amplifiers) connected to the motion 
controllers through universal motion 
interfaces (UMI). 

3. Operator console, acting both as robot 
terminal and teach pendant – a laptop 
wireless connected to the PXI real-time 
embedded central processor. 

The system applications were developed 
differently: motion planning, kinematics 
model computation and trajectory 
generation are written as C++ routines, 
whereas the set of motion tracking 
routines: vector control (electronic 
gearing) – for coordinated joints motion, 
contouring – for traversing Cartesian 
support points along linear trajectories or 

 

Fig. 3. Industrial implementing of the multiprocessor robot controller 
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Fig. 4. Creating, converting and transferring motion control application code for MC 
hardware units 

breakpoint motion – for calibration were 
developed as LabVIEW applications with 
the NI LabVIEW Real-Time module, and 
downloaded in the embedded real-time 
PXI central controller via Ethernet. 

The embedded code is run on a real-time, 
multitasking operating system.  

Fig. 4 shows the generic mechanism 
used to create, convert and transfer the 
application code to the hardware 
processing modules. This mechanism is 
based on integrated C support for 
developing multi-platforms of Motion 
Control type. 

The system controlling the Windows 
application code programming tools 
(Visual C++ and LabVIEW) shares an 
Application Programming Interface – API 
with the Motion Control (MC) language.  

The same software operations are in the 
MC programming language and in the 
function library, which simplifies program 
migration and reduces adaptation times for 
applications developed in different 
languages. 

The Real Time Operating System of the 
robot controller is pre-emptive and re-
entrant, having the capability to execute 
both on mono processor and 
multiprocessor architectures, and 
supporting Intel processors. The OS  

architecture is modular and consists of two 
main layers (Fig. 5):  

• A user module (with limitations to 
system resource access), and  

• A kernel module, having unrestricted 
access to the system's memory and 
external devices. 

The User module contains subsystems 
capable to pass I/O requests to suitable 
software drivers of the kernel module, by 
using the I/O manager. 

 
Two subsystems are on the user module 

layer:   

• The Environment subsystem (E_Ss) 
executing applications written for 
various types of OS, 

• The Integral subsystem (I_Ss) 
operates specific system functions 
for the E_Ss. 

The Executive interfaces and all 
subsystems in the User module deal with 
I/O, object management, security and 
process management.  

The hybrid Kernel is positioned between 
the HAL (Hardware Abstraction Level) 
and the Executive, in order to provide 
multiprocessor synchronization, planning 
and interrupt- and execution threads 
resolution, as well as trap processing and 
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Fig. 5. The architecture of the operating system (OS) 

exception solving. The Kernel module 
consists from executive services, in their 
turn composed from several modules  
performing specific tasks, kernel drivers, a 
Microkernel and HAL (Hardware 
Abstraction Level). HAL includes specific 
code for hardware controlling I/O 
interfaces, interrupt controllers and 
multiple processors [5]. 

The Microkernel is responsible for driver 
setup at the start moment. The drivers in 
the Kernel module are on three layers: 
high-, medium- and low level. Low level 
drivers are either inheritance drivers 
controlling directly a device, or busses for 
the PnP hardware. The PnP Manager is 
used to detect and initialize at system start 
up the Plug and Play devices. Low level 
drivers are either inheritance drivers 

controlling directly a device, or busses for 
the PnP hardware. The PnP Manager is 
used to detect and initialize at system start 
up the Plug and Play devices. 

 
4.   Experimental work. Conclusions 
 

The reported research was carried out in 
the framework of a National CEEX Grant 
funded by the Ministry of Education and 
Research, and aims to develop a robot 
system and KBTS for automating 
construction tasks (Fig 6). 
On the test has been observed that the 
positioning precision of the entire structure 
is 0.2 mm due to mechanical movement 
transmission, also the robot needs to move 
using small accelerations and trapezoidal 
speed profile, on high accelerations 
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/decelerations the mechanical structure 
starts to vibrate. 

 

Fig. 6. The construction robot 
 
Another problem which we try to solve 

is that the motors are commanded by two 
different types of frequency converters 
which give two different types of speed 
control (Fig. 7.) (the KEB converters 
seems to be more stable – green line, the 
other converter is LS-600).  

In Fig. 7. the internal PID loops of the 
converters are disabled and is used 

only the PID control loop of the NI 
controllers. 

Fig 8 shows simulation results of RMRC 
motion control algorithms for linear paths 
in the joint space of the robot arm. In the 
left side is represented the Position/Time 
characteristic, and in the right side is 
presented the Speed/Time characteristic 
(Red – KEB, White – LS600). Linear joint 
space paths are done by the trajectory 
generator and motion tracking processor 
according to the “electronic gear” 
algorithm below:   
1. Start from two trained robot joint 

configurations 5,4,321 ,, θθθ dd : initial ip  

and final fp . 

2. Compute the rotation/translation path 
differences between each element of 

fp  and ip , as the difference array 

∆∆∆∆∆ θθθ 54321 ,,,, dd . 
3. Determine the axis maximum path 

difference 
),,,,(max 54321

51
∆∆∆∆∆

≤≤
θθθ=∆ ddq

i
i , (3) 

corresponding to the master axis (MA) 
motion for the current trajectory 
segment. 

4. Compute the gear ratio between the 
maximum path difference and each 
element of the difference array; the 
gear array δδδδδ θθθ= 54321 ,,,, ddGA  
results. This array will have one value

 
Fig. 7. Blending moves for two axes (position – left, and speed-right) 
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Fig. 8. RMRC and electronic gear path control results 

equal to 1 and the other values in the range 
(-1, 1). 
5. The positions of the five axes are 

modified incrementally by adding the 
values from the gear array multiplied 
by a value obtained by dividing the 
maximum difference to the resolution 
of the motor mounted on this axis (the 
other slave axes (SA) will have at least 
the same resolution). The value of n in 
the equation below incrementally 
changes axes position along the linear 
joint path: 

    
GAoffsetposMAposSA

nqoffsetposMAposMA i

⋅−=
∆+−=

)_(_

/)_(_  (4) 

6. Actions in step 5 are executed until the 
difference between ip  and fp  is small 

enough. 

The parameters of the motion control 
algorithms were tuned to provide 1 mm 
worst error for Cartesian displacements 
and 0.2 mm worst positioning error.  

In Fig. 8 we can see the big difference 
between the two converters; the LS-600 
converter has problems in keeping the 
constant speed. The position is reached, 
but the speed has big variations which can 
lead to problems when the robot is loaded 
with high payload. 
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