
Chapter Number

Holonic Robot Control for Job Shop Assembly
by Dynamic Simulation

Theodor Borangiu, Silviu Raileanu, Andrei Rosu and Mihai Parlea
University Politehnica of Bucharest

Romania

1. Introduction
To be competitive, manufacturing should adapt to changing conditions imposed by the
market. The greater variety of products, the possible large fluctuations in demand, the
shorter lifecycle of products expressed by a higher dynamics of new products, and the
increased customer expectations in terms of quality and delivery time are challenges that
manufacturing companies have to deal with to remain competitive. Besides these market
based challenges, manufacturing firms also need to be constantly flexible, adapt to newly
developed processes and technologies and to rapidly changing environmental protection
regulations, support innovation and continuous development processes (Nylund et al,
2008). Although the optimization of the production process remains a key aspect in the
domain of fabrication systems, adaptive production gains more and more field (Sauer,
2008). Flexible manufacturing systems should be able to quickly adapt to new situations like
machine breakdown, machine recovery due to physical failure or stock depletion and also
face rush orders (Borangiu et al, 2008).
In recent decades, scientific developments in the field of production control have led to new
architectures including heterarchical/non-hierarchical architectures that play a prominent
role in flexible manufacturing.
The traditional approach is mainly associated to the initial CIM concept (Computer
Integrated Manufacturing) and usually leads to centralized or hierarchical control structures
in which a supervisor initiates all the activities and the subordinate units respond directly in
order to perform them. Due to the complexity of manufacturing problems, the usual practice
has been to split the global problem into hierarchically dependent functions that operate
within smaller time ranges, such as planning, scheduling, control and monitoring. This
traditional approach is known to provide near optimal solutions, but only when hard
assumptions are met, for example, no external (e.g., rush orders) or internal (e.g., machine
breakdowns) perturbations, a priori known demands, and/or supplier reliability. Since
reality is rarely so deterministic, this approach rapidly becomes inefficient when the system
must deal with stochastic behaviour.
The above observations allowed researchers to design in a second approach new control
architectures formed by a group of independent entities that bid for orders based on their
status and future workload. There is no master-slave relationship; all the entities including
the manager of a particular order are bidding for it. Due to the decentralized architecture,
the entities have full local autonomy and can react promptly to any change imposed to the

 Programmable Logic Controller

2

system. However, because the behaviour of a production order depends on the number and
characteristics of other orders, it is impossible to seek global batch optimization and the
system’s performance is unpredictable. These control architectures, also called emergent or
self-organized, can be categorized in four types (Bousiba et al, 2002): bionic & bio-inspired, as
proposed by Okino (Okino, 1993) and Dorigo & Stuzle (Dorigo et al, 2004); multi-agent, as
proposed by Maione & Naso (Maione et al, 2003); holonic, as proposed by Van Brussel (Van
Brussel et al, 1998); and heterarchical, as proposed by Trentesaux (Trentesaux et al., 1998). An
analysis of the state-of-the-art has been recently published by Trentesaux (Trentesaux, 2007).
His main conclusion is that the expected advantages of such architectures are related to
agility: on short term such architectures are reactive and on long term they are able to adapt
themselves to their environment. However, these last control architectures suffer from the
lack of long-term optimality, even when the environment remains deterministic, which can
be considered as a "myopic" behaviour. This is the main reason why such control
architectures are not really used by industrialists at the moment.
In order to benefit from the advantages of both types of architectures, traditional and
emergent, a new control paradigm was proposed by (Sallez et al., 2009) in which traditional
explicit control is combined with an innovative type of control called implicit control. This
paradigm is called open-control, meaning that subordinate entities are characterised by
autonomy and an open communication mechanism permits them to be influenced by higher
level entities directly or indirectly.
In the heterarhical control approach there is also a new research direction nowadays focused
on the concept "system controlled by the product" in which dynamical information and
decisional capabilities are embedded into the product, making it an active entity in the
fabrication process (McFarlane et al., 2002, Zbib et al., 2008).
Rather then combining the hierarchical and heterarchical control, an approach is proposed
in the current work in which the two control architectures are alternated based on the
current state of the system called distributed semi-heterarchic control (Borangiu et. al, 2008).
Thus, the system starts working in a hierarchical manner, using an offline schedule, in order
to optimize production, but as soon as a disturbance appears it switches to a heterarchical
operation mode in which resources bid for the execution of orders.
There is currently a new trend in manufacturing control to apply the principle of holons in
industrial networked robotics. The interpretation of the holon as a whole particle proposes
an entity which is entirely stand-alone or supreme as is (a whole), but belongs to a higher
order system as a basic individual part (a particle). If a limited number of parts (holons) fail,
the higher order system should still be able to proceed with its main task by diverting the
lost functionalities to other holons (Ramos, 1996; Deen, 2003).
Based on Koestler’s concept, the next definitions, established by the Holonic Manufacturing
Systems (HMS) consortium (Van Brussel et al., 1998) were accepted and used in this project:
• Holon: An autonomous and co-operative building block of a manufacturing system for

transforming, transporting, storing and/or validating information and physical objects.
It consists of an information- and physical-processing part. A holon can be part of
another holon.

• Autonomy: The capability of an entity to create and control the execution of its own
strategies.

• Co-operation: A process whereby a set of entities develops and executes mutually
acceptable plans.

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

3

• Holarchy: A system of holons that can co-operate to achieve a goal or objective. The
holarchy defines the basic rules for co-operation of holons and thereby limits their
autonomy (Wyns, 1997).

• Holonic manufacturing execution system (HMES): a holarchy integrating in (custom
designed) software architecture the entire range of manufacturing tasks from ordering
to design, and production execution.

• Holonic attributes: attributes of an entity that make it a Holon. The minimum set is thus
autonomy and cooperativeness (Bongaerts et al., 1996, 1998; Markus et al., 1996; Morel
et al., 2003).

Based on the PROSA reference architecture, several research groups have developed holonic
control frameworks to operate parts of a manufacturing system (e.g. part processing on
multiple machine tools, part assembling on multiple robots, etc), but only a few considered
material-handling tasks (Liu et al., 1973) and transportation. The negotiation scenario,
proposed by (Usher and Wang, 2000), for the cooperation between intelligent agents in
manufacturing control, or the "n products on m machines" KB scheduling algorithms,
proposed by (Kusiak, 1990), are limited to production planning and job scheduling, and do
not consider: (a) the constraints imposed by the transportation system (e.g. cell conveyor);
(b) the need to qualify (recognize, locate, check for collision-free robot access and correct
robot points for part mounting) assembly components; (c) verify the assembly in different
execution stages (Borangiu, 2009).
The proposed holonic control framework faces the difficulties arising when moving from
control theory to practice, because: (i) the real cell conveyor is modelled, parameterized and
integrated in the generic job scheduling; (ii) the material components (parts, assemblies) are
described by task-dependent features which are extracted from images processed in real
time for material qualifying and product inspection; (iii) the mapping of job scheduling to
job execution via conveyor devices (motors, stoppers, diverters) is granted to PLC networks.
In order to face resource breakdowns, the job shop production structure using networked
robot controllers with multiple-LAN communication is able to replicate data for single
product execution and batch production planning and tracking (Cheng et al., 2006).
The holonic implementing framework will be exemplified on a discrete, repetitive
production system with part machining, robotized assembling and visual quality control
capabilities. The management of changes is imposed at resource breakdown, storage
depletion and occurrence of rush orders. The expected performances of the system are: high
productivity (selectable cost functions: throughput, machine/robot loading, overall time),
high accuracy of operations, adaptability to material flow variations and shop floor agility.
The functionalities below were imposed in the development of the holonic control system:
• adaptability and quick reaction in face of production changes (rush orders);
• real time vision-based robot guidance (GVR) during precision assembly and visual in

line geometry control of products (AVI) are requirements imposed to increase the
diversity and quality of services performed;

• efficient (optimal) use of available resources (robot, CNC machine tools) in normal
operating mode;

• stability in face of disturbances (resource failure, storage depletion).
The paper describes: (i) the design and implementing of a PLC-based distributed control
architecture for a production system with networked assembly robots and machine tools,
automatically switching between hierarchical and heterarchical operating mode; (ii) the

 Programmable Logic Controller

4

definition of the holarchy and set up of the holon structures; (iii) the design and software
implementing of operation scheduling algorithms and HMES integration; (iv) the solution
adopted for fault-tolerance to robot and CNC breakdown (dynamic job reconfiguring
instead of reprogramming) and high availability (redundancy in SPOF hardware and inter-
device communication paths); (v) the definition and execution of part qualifying operations
by real-time, high-speed image processing and feature extraction (vi) the interconnection of
job-shop control processes with business processes at enterprise level, by managing offer
requests, customer orders and providing feedback on the current status of batch orders.
The proposed design and implementing framework addresses a networked robotized job shop
assembly structure composed by a number or robot-vision stations, linked by a closed-loop
transportation system (conveyor). The final products result by executing a number of
mounting, joining and fixing operations by one or several of the networked robots. The set
of specific assembling operations is extended to on-line part conditioning (locating, tracking,
qualifying, handling) and checking of relative positioning of components and geometry
features. These functional extensions are supported by artificial vision merging motion
control tasks (Guiding Vision for Robots - GVR) and quality control tasks (Automated Visual
Inspection – AVI). Real time machine vision is used to adjust robot paths for component
mounting or fastening, to check for proper geometry and pose of assembly components, and
to inspect the assembly in various execution stages (Borangiu, 2004).

2. Generic holonic control model for a FMS
2.1 Description of the FMS processes
According to (Brussel et al, 1998) a fabrication system is composed of the following generic
entities and domains that are associated to the production:

Fig. 1. HMS structure (Brussel et al, 1998, Nylund, 2008), with supply/domain extension

Entities and domains have different purposes in the system, and are described in the
PROSA reference architecture which explains the structure of a fabrication system using
three basic holons: Product- (PH), Resource- (RH) and Order-Holon (OH) (Brussel et al,
1998). These entities are interconnected two by two with the process-, production- and

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

5

business domains (Nylund et al., 2008). The process- along with the production domains
characterizes the system from the internal point of view. The first, process domain, is related
with the system's capabilities to be able to execute certain operations that are needed to
manufacture products offered to the clients. These capabilities are defined by the products
and are realized by the resources. The second one, the production domain, manages the real-
time information which relates the orders to the resources. This information is subject to
offline and online scheduling in order to optimize the functioning of the fabrication system.
The last domain, the business domain, relates orders to products and the fabrication system to
the external world represented by clients.
Generic structure of a holon
Fig. 2 shows the structure of a generic holon, containing the digital, real, virtual and
communication parts.

Fig. 2. The structure of a generic holon (Nylund et al., 2008)

In order for all of the different holons of the system to cooperate they must have similar
structures, especially similar information structure. According to (Nylund et al., 2008) a
general entity is composed of a real part which represents the physical resource capable of
performing operations on products, a virtual part which is the model of the entity, a digital
part in charge with the decision making and a communication port responsible for
cooperation with the surrounding environment.

2.2 Component entities
The distributed control solution proposed in this project provides a set of functionalities
rending the material-conditioning cell flexible, rapidly reacting to changes in client’s orders
(batch size, type of products, alternate technologies, rush orders, updated programs), and
fault-tolerant to resources getting down temporarily. In fact, the holonic control architecture
proposed follows the key features of the PROSA reference architecture (Van Brussel et al,
1998; Valkaenars et al, 1994), extended with:
• Automatic switching between hierarchical (for efficient use of resources and global

production optimization) and heterarchical (for agility to order changes, e.g. rush orders,
and fault tolerance to resource breakdowns) production control modes.

• Automatic planning and execution of assembly component supply; automatic
generation of self-supply tasks upon detecting local storage depletion,

 Programmable Logic Controller

6

• In line vision-based parts qualifying and quality control of products in various
execution stages.

• Robotized material processing (e.g. assembling, fastening) under visual control /
guidance.

As suggested by the PROSA abstract, the manufacturing system was broken down into
three basic holons, the Resource Holon (RH), the Product Holon (PH), and the Order Holon
(OH). Each of these holons may exist more than once to fully define the manufacturing cell.
Order Holons are created by a Global Production Scheduler from the aggregate list of
product orders (APO) generated at ERP level.
Alternate OH are automatically created in response to changes in product batches (rush
orders) and to failures occurring during execution (resource breakdown, storage depletion).
A holon designs a class containing data fields as well as functionality. Beside the
information part, holons usually possess a physical part, like the product_on_pallet for OH
(Duffie and Prabhu, 1994).
The way in which different types of holons communicate with each other and the type of
information they exchange depends on the nature of the manufacturing cell. Fig. 3 shows
the interaction diagram of the basic holon classes as they were implemented into software to
solve scheduling and failure/recovery management problems. A separate software module,

Fig. 3. Basic holon cooperation and communication structure in the semi-heterarchical
control architecture

Resource Holons
Product Holons
(operation, tool,

material, storage)

Order Holons

CNP

Customer
Orders

PLC Files

Current status Available operating modes,
models, programs

Job scheduling

Job re-scheduling

Batch (OH set) execution,
Product traceability

Transfer for execution
(work-to-do)

Describe
work-to-plan

Announce
work-to-do

Robot controllers,
Machine CNC,
Conveyor devices

Announce
capacity

Provide
resource
schedule

Product

Resource
failure /
recovery
capacity

Storage
depletion

Expertise Holons

Order change

Due data, rush tag

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

7

the HolonManager hosts all holons in form of arrays of certain types of holons and
coordinates the data exchange among them.
The HolonManager entity is responsible with the planning (with help of Expertise Holons –
EH) and management of OH exactly as Staff Holons in the PROSA architecture do; in
addition, the HolonManager interfaces the application with the exterior (maps OH into
standard PLC file and tracks OH execution for user feedback). Since a single holon may be
seen as a class object in the object oriented programming environment (C# and .net 3.0
framework tools have been used), each of the three basic holon types was realized as a
separate class.
The instances necessary to define the manufacturing cell are then hosted by the class
Holons.HolonManager. Each type is present as an array which may be scaled dynamically if
necessary. Thus, the array of Holons.Product class instances assumes a size of existing
product types; each element represents one product type with all necessary info to generate
OH of this product type.
The resource holon (RH) holds information about manufacturing resources (robots
manipulators, grippers, machine tools, video cameras, magnetic sensors, RFID devices, a.o.).
In general any resource may have a number of sub-resources (e.g. a robot manipulator with
gripper with two fingers with force sensors), which were seen as holons. This project
considers an entire resource with all its sub-resources as a holon without making the
distinction of sub-systems. The hardware part of this type of holon is the actual physical
robot and gripper with its functions. A permanent data exchange between hardware and
software ensures that the actual status is accessible through the software representation of
the resource holon.
A product holon (PH) holds information about a product type. Any (assembly) type that
may be produced within the manufacturing system and resource setup must be defined in a
product holon. The fact that such a holon exists does not necessarily mean that the
respective product is being really assembled. Only the array of order holons (described in
the next paragraph) will specify that something is manufactured and in what quantity. The
product information is more of a theoretical description of the physical counter piece but not
directly associated with one individual physical item, unlike the resource holon. However,
the availability of assembling components is ultimately checked by the PLC prior to
authorize the final transfer of a pallet carrying the product to be assembled in a robot-vision
workstation (see Fig. 6).
An order holon represents all information necessary to produce one item of a certain
product type. This holon is directly associated with the emerging item; it holds the
information about the status of this very item at any time reaching from assembly not started
yet throughout order progressing to order completed. Furthermore a complete manufacturing
schedule must be computed holding all necessary information relevant for the production
cell to successfully complete these orders, eventually satisfying a cost function such as the
throughput or resource loading.
Before production starts for a specific aggregate order, customer commands exist in form of
electronic information. If a certain product needs to be manufactured n times, n identical raw
order holons are first created (Fig. 4).
During production execution orders can be seen as they progressively develop on a carrying
support (pallet) in the system; after one order has been completed, the item gets cleared
from the exiting pallet and has now a physical form. Before a schedule is defined for an

 Programmable Logic Controller

8

aggregate order, raw order holons are created based on the information stored in the
product holon.

Fig. 4. Queue of two products (raw order holons) with a total of 7 items

A layer of Order Holons (Ppp ≤≤1 ,OH) of variable depth, corresponding to assembly

plans computed off line for the P final products is the output of the production scheduler fed
with raw customer orders. A basic (quasi optimal) process plan is generated as a sequence of
Order Holons (assembled products). Production planning uses the Step Scheduler
developed both for production start up and resource failure and recovery situations. To
formalize the OH scheduling process, the notations and definitions below are introduced:

=O Set of all operations (assembly, conditioning)
=P Set of all assemblies (final products)

=pOA Set of operations for assembly PpAp ∈,

=L Set of all resource types
=lQ Set of resources of type Lll ∈,

=t Current scheduling time
=lqr Resource q of type l , LlQq l ∈∈ ,

For the networked assembly problem, the following types of resources were defined:
• =qr1 assembly robot manipulator, 2,1=q : SCARA, 4,3=q : vertical articulated;

• =qr2 gripper, 2,1=q : 2(3) –finger number, 4,3=q : flat / concave-contact profile;

• =qr3 end-effector tool, 3,2,1=q : none / bolt / screwdriver;

• =qr4 physical-virtual camera duality (jiVP), ii nvjnvq ≤≤= ∑ 1 , ,,...2,1 ,

where =inv no. of virtual cameras defined and installed for each physical camera
91 , ≤≤ ii ;

• =qr5 magnetic code R/W device, 4,3,2,1=q .

Resource lqr is: operational if it can be used after a finite time delay lqΔ , 0,, ≥Δ∈∈ lql LlQq ,

available if 0=Δ lq , and down otherwise. An assembly plan)(AP δ
p of a product pA is

embedded in a resulting Order Holon OH as a vector of triplets, each specifying operation
number io , processing time)(δ

it of operation io using assembly plan δ , and set of resources
)(δ

iR to process the operation io :

 fiRto iiip ≤≤= δδδ 1),...],,,([...,AP)()()(,

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

9

where fiLlQqrrR liqiqi ≤≤∈∈= δδδ 1 ,, },,...,{)(
5

)(
1

)(.

The Step Scheduler for assembly computes off-line the Ppp ≤≤δ 1 ,OH)(at batch level

rending assembly plans)(AP δ
p available for products PpAp ∈, . One operation Ooi ∈ in

the thp OH is executable if all resources needed to carry it out are defined as operational by at

least one)(AP δ
p . Operation Ooi ∈ is schedulable at time t , if

1. No other operation (mounting, inspecting) upon the same product is being processed at
time t .

2. All operations preceding io have been completed before time t .

3. All resources needed by the basic assembly plans)(AP δ
p to process operation io are

available.
Since a single holon may be seen as a class object in the object oriented programming
environment (in this project the C# and .net 3.0 framework tools have been used), each of
the three basic holon types was realized as a separate class. The instances necessary to
define the manufacturing cell are then hosted by the Holons.HolonManager class.
The array of Holons.Product class instances assumes a size of currently present product
types; each element represents one product type with all necessary information to generate
orders of this product type. The last array composed of Holons.Order class instances has a
number of elements equal to the total count of items that needs to be manufactured. Each
element defines an order of a certain product type with its specific assembly schedule.
According to the definition (Koestler, 1967) a holon is an autonomous and collaborative
entity which contains a hardware and software part. In the case of the supply holon the
hardware part is represented by the pallet carrying pieces in the system and the software is
the application on the PLC which controls the path pallet and manages the exchange of
messages between the workplaces and the supplied station. The relationship between the
two sides is 1 to 1 and synchronization is done via the code written on the pallet (251-254).
Depending on when the supplies are sent there are two types of holons: one supplying the
workplaces at production start up, and the one re-supplying the workstations during
production execution. The life of a Supply Holon spreads during all the manufacturing
process. Unlike a normal order or a Supply Holon needed for initial feeding, where the
operations to be performed are established in advance, for a Supply Holon used at re-
feeding the operations are chosen dynamically depending on the usage of workstations.
During production a single Supply Holon stays in the system pending for re-feeding
operations. Another re-feeding constraint is the following: a pallet can carry only one type of
parts for re-supply because when a workstation signals that it has an empty stock it means
that it lacks a single type of piece. The type of piece is signaled to the PLC by a code similar
to code that is sent when an order requires the execution of an operation. This signal is then
sent to the workstation and is stored into a FIFO-type stack. From this stack re-feeding
requests will be taken.
A particular case of re-feeding is the initial supply, when all workstation stocks are empty.
In this case the number of Supply Holons will be extended to 4, which is the number of

 Programmable Logic Controller

10

pallets which ensure that the system will not block. After re-feeding only the pallet that
supplies workstation during production remains in the system. The number of pallets is
computed based on the configuration of the transportation system (Fig. 5).

Fig. 5. Holonic manufacturing system with self-supply of assembly parts

Before production starts for a particular Aggregate List of Product Orders (APO created at
ERP level), the OHs exist only in electronic format; during production execution each OH
develops on a pallet in the system; after completion, the item gets cleared from the exiting
pallet and has now a physical form. OHs are created from raw orders (items in the APO list)
which are based on the information stored in the product holon. If a certain product needs
to be manufactured n times, then n identical raw orders are created first; when OH for these

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

11

raw orders are created, the information is distinct for each OH in terms of robot stations
which need to be visited and the time at which they are visited (Onori et al., 2006).
Unlike the product holon, seen as a general static entity describing a certain product type,
the order holon is the actual realization of one item of a product type and undergoes many
changes (of information as well as of physical nature) during manufacturing. An OH is
represented by a pallet carrier with a unique identifier on it (magnetic tag), the manufactured
product (on the pallet), and a management program running on the PLC communicating with
resource controllers.
The mappings between the (holonic) system requirements and the functional architecture
are included in Figs. 1 and 4. Fig. 6 describes the mappings between the functional
architecture and the physical one (for a particular implementation). The real world
representation refers to the model (the software counterpart of the RH, PH and OH set) of
the real production system which exists at the planning level.

Fig. 6. Mapping between the (holonic) system and the physical architecture

 Programmable Logic Controller

12

3. Implementation methodology using holonic principles
The general information flow that characterizes the production system at enterprise level is
described in Fig. 7:

Customer
Order

Aggregate list
of product

On line
ProductOff line

Product

Production Database &
Rules/Strategies, RH, PH

Update

 Supplier
Data,

Job-Shop PLC Control
(OH/SH Execution,

RH Status Monitoring)

SH, Reschedule Request at
Resource

Job-Shop Scheduler
(Batch Production

R
H

 S
ta

tu
s

M
on

ito
rin

g

(R
ob

ot
s,

C
am

er
as

,

H
ol

on
ic

 B
id

di
ng

 M
ec

ha
ni

sm

(C
re

at
e

SH
 fo

r d
ep

le
te

d
st

or
ag

e
an

d
al

te
rn

at
e

O
H

 fo
r W

IP
)

Supply- and WIP

Reschedule

In
se

rt
ne

w
 S

H

&
al

te
rn

at
e

Cell

Cell

Station
Compute

Resource
Controllers (RC,

CAPP
(OH/SH

CAM, CAQC
(OH/SH

CAD, CAE
(Customer

Order

Marketing,
Sales (Offer

Request

E

Fig. 7. Information and data flow of HMES with knowledge-based Service Oriented
Architecture for customer request management

After the definition of the process and production domains the fabrication cell is ready for
utilization and the business process can begin. In order for this process to be made flexible it
is proposed that the information on offer requests, offers to clients, order collection and
production feedback is retrieved through a web interface which is interconnected with the
process as described in Fig. 8 below:

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

13

Fig. 8. Time diagram representing messages exchanged between entities from the business
domain

Synchronization between the client interface and the planning and management application
for the work cell will be done via the exchange of text files. There will be three types of files:
a. Input files for the scheduler
 1. input_nr_orders.txt
For a command the client will provide the manufacturer with the following details: product
types, quantities and priorities. There will be four levels of priority (0, 1, 2 and 3) where 3
represent the orders with the highest priority. Once this information is provided a
connection between them and production domain must be created in order to report its state
to the client. Therefore, besides the three fields that define a client order another field that
will make contact with customer orders is added. This is the customer index.
In this way, the file has the following structure:

nr_products$priority$product_name $index_client
Here, nr_orders (from the file input_nr_orders.txt) is an integer which increases at each
command. At each cycle of planning and production the application will retrieve the
information from the file with the lowest index and then will delete the file.
 2. command.txt
It is better that once the orders are introduced in production it exists a way to intervene in
their execution. The reason is that for an undetermined cause the cancellation of orders'
execution should be possible. Therefore, through this file that contains a single row (the

 Programmable Logic Controller

14

command), messages will be sent to the scheduler and management application. The
commands in the file are interpreted as follows:

start_production – represents the start command to the scheduler
stop_production – stops the production immediately and cancels all orders in work.
express_order – represents the command that stops current production, reads a new
entry (input_nr_orders file) and then plans and executes the entire batch.

b. Output files from the scheduler
 1. feedback.txt
This is a file that contains the state of the orders released for execution. This file has the
following line structure:

product_typetip_produs, start_time_execution,stop_time_execution,client_index,state
having the following description: product_type – the type of product indicated by the
representation; start_time_execution – the time at which the product execution has begun;
stop_time_execution – the time at which the product execution will end; client_ index – the
index that uniquely attaches a product to a client (e.g.: if there are two clients with the same
product it must be identified to whom it belongs to); state – represents a product state as
follows: failed_execution (the product cannot be executed due to lack of raw materials or
resources), failed (the product can not be executed because of a malfunction that occurred
during its fabrication), processing (execution in progress) and done (product executed).
This file will be analyzed with a frequency that permits sending the information to the client
in real time.
At the end of the execution of a batch of products the file will contain two types of products:
executed and non-executed. At every event in the system (resource failure or recovery) the
scheduling is recomputed taking into account the products previously marked as
compromised due to lack of resources. The non-executed products have reached this state
due to two possible reasons: either they failed on the production line or there were no raw
materials for their execution. For this reason the planning and management application
checks one last time the "non-executed" status of products. If products still cannot be done
they are finally rejected (e.g. a part is wrongly mounted because the palette doesn’t arrive
perfectly aligned with one of the robot's base axis; this is identified using machine vision,
and the respective product remains marked as "failed").
 2. lock
This is a temporary file that reflects the utilization state of the scheduler and management
application: if it exists, the application is occupied with a previous order; if not, it means that
orders can be sent to it. This file contains the date and time the system was blocked.
 3. A response from the scheduling and management application side should exist to
confirm that it is in a running/stopped state.
c. Storage files for memorizing execution logs
 1. output_date_time.txt
Following the execution of a batch of products the resulting information is stored for
subsequent processing. Thus there will be stored all information related to the traceability of
products: operations, execution times, entry and exit times, visited resources and the final
state of product (done/failed). All this information will be stored in text files whose names

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

15

start with the output keyword, followed by time and date when the file was written. Inside
the file the following information will be found:

Order 1 with index 1 of type H
----------FAILED----------
Priority = …
Insertion time: …
Exit time: …
Processing time: …
Transporting time: …
Operations:
axe(on resource …, at time …), …

The FAILED field appears only if it is the case. If production is stopped to remove / add
products from execution the log file will be written at the end of the production.
 2. error.txt
This file contains all the failures and recoveries the system went through in the form of
records with the following structure:

Date: the date the failure/recovery happened
Time: the time the failure/recovery happened
Error type: string that uniquely identifies the problem and the resource that was affected.

Fig. 9. Diagram of the user interaction interface

In the representation of Fig. 9, the Web browser is a common web browser like: internet
explorer, firefox, opera, etc; Web server is the location that hosts the user interaction page;
the Data base server is the data base server that contains the information representing client
orders, products, etc.
The Graphical interface for interacting with the work cell is the module through which
communication is done between the scheduling and management application and the
client.
Fig. 10 presents the application modules. These are:

Web browser

Web server

Data base server

Graphical interface for
interacting with the work cell

 Programmable Logic Controller

16

Fig. 10. Application modules

Authentication: login/logout and user administration module (for allowed zones and
permissions).
Administration commands module: module that monitors the client commands currently
in execution.
User administration module: module in charge of user personal data.
Administration products module: module in charge with creating a product
Administration products module: module in charge with the materials needed to create
new products.
Workcell interfacing module: module needed for the communication with the application
from the work cell.
Fig. 11 shows the data base structure, with the following components:

Users: a table that contains the authentication data for registered users.
User data: a table that contains user personal data address, telephone, etc.
Client orders: a table that memorizes the clients' orders already sent to execution.
Status: a table that contains the status of each client order.
Product-orders link: the link table that does the connection between the possible products
to order and the orders sent to execution
Products: a table containing the list of possible products that can be executed by the system.
Products properties: a table that describes the products composition (operations to perform
and precedence between them).
Products-materials link: the link table creating the connection between the list of materials
and the possible products that can be executed by the system.
Materials: a table containing the existing materials that can be used to assemble products.
Materials prices: a table containing the cost of materials.
Materials properties: a table containing the description of assembly materials.
Measurement units: a table containing the measurement units for the materials used in the
fabrication process.

User administration
module

Authentication

Administration
commands module

Administration
products module

Raw materials
administration module Workcell interfacing

module

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

17

Fig. 11. Data base structure

4. Essential production processes
4.1 Step scheduler based on dynamic simulation
4.1.1 Scheduling production at batch level
Expertize Holons (EH) were defined and implemented as a set of rules creating an optimal
schedule (maximizing the load of all available resources), which means that each of the four
robots in the system should have a minimum of idling time. To achieve a maximum load of
each robot, the conveyor system should never be jammed by any pallet carrying an item
waiting to be processed by a robot. If the transport system is not blocked for most of the
time each robot station will be always reachable, thus ready to receive an item and carry out
a task.
Based on this idea a Step Scheduler has been developed. Each individual item (product) is
being scheduled one step at a time. The process is initialized by generating a queue of all
raw customer orders (products to be assembled – Fig. 4). Once the queue has been generated
at production start up, failure detection or recovery from failure, the following algorithm is
executed (an iteration of the algorithm checks and completes the following action steps):
Step 1. Check the number of pallets in the system, if there are less than 2 pallets, go to Step

2, else go to Step 3
Step 2. Choose any item randomly from the queue

Step 2.1: For the chosen item generate a list of all possible operations based on
predecessor constraints

Step 2.2: For each possible operation find all robots capable of executing the task
and calculate the waiting time for each robot before the task could be
executed once the item arrives at the station

1-1

n-1

1-1xn
1-1

n-1

0-n

1-n

1-n

1-1

0-n

Client orders

User data
Product-

orders link

Products-materials link

Materials

Materials prices

Products

Materials properties

Products properties

Status

Measurement
units

Users

n-1

 Programmable Logic Controller

18

Step 2.3: Choose the operation with the smallest waiting time and introduce the
item on a new pallet with the destination acquired before, store the current
time index as insertion time

Step 3. Execute a step of one time index increment in the conveyor simulator and the robot
operation execution; if a robot finishes an operation go to Step 4; if a pallet arrives
at a workstation go to Step 6; else go to Step 5

Step 4. For the item that just finished an operation, store the current time index as operation
completed time, mark the robot as free, then do the following:
Step 4.1: determine whether this item has been completed (all operations have been

carried out), if so, mark the item as completed and send the pallet to the
output, then continue with Step 5

Step 4.2: For the chosen item generate a list of all possible operations based on
predecessor constraints

Step 4.3: For each possible operation find all robots capable of executing the task
and calculate the waiting time for each robot before the task could be
executed once the item arrives at the station

Step 4.4: Choose the operation with the smallest operation start time and send the
pallet to that robot station

Step 5. If there are still items in the queue or pallets in the system, go back to Step 1, else
exit the algorithm

Step 6. Step 6: For the arriving item store the current time index as operation start time,
allocate this item on the robot and mark the robot as busy, continue with Step 1

Once an item has been introduced, it will remain in the system until it is completed. No item
will leave the system and re-enter it to a later point in time. In other words any sequence
(respecting the insertion criterion that the waiting time must be minimal) of alternating
product types may be introduced into the system. Tests showed that different sequences
(different runs of the algorithm on the exact same product definitions) yield slightly
different total production times. For this reason, an alternative running mode has been
integrated into the software. The so called Step Scheduler Best Sequence mode runs the
algorithm 100 times and outputs the best result of these runs.

4.1.2 The Simulator scheduling tool
A Simulator has been developed and integrated in the global software system to assist and
stepwise validate the creation of order holons list (i.e. the sequenced raw order holons). The
simulation program routines play an essential role in the scheduling process, both at:
• Production start up, detection of a resource failure, and recovery after failure (off line,

preparing production)
• Tracking of production execution, graphic monitoring (real time during production

execution)
The main quality of simulating the transportation of products on pallets is the capability to
vary the time base. The software furthermore uses a transportation time matrix which has
been created by measuring the actual time used by the real system to transport a pallet from
one point of interest to another (in general from one stopper or elevator to the next). The
simulation's smallest time index (transport time slice) corresponds to one advancement step
of a pallet and was defined as 0.5 seconds.
The transport simulation is used off-line to generate global production schedules, and in real
time to track production execution. There is a fundamental difference in the use of core

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

19

routines developed to realize the correct transportation of pallets. In the case of the visual
simulation, the routines run in a timed mode. This means that after each iteration of the
main program loop a timer stops the program and waits until the smallest time index of 0.5
seconds has passed by and only after that allows another iteration of the main program
loop. The result of this pause is the fluent running in 0.5 second steps of the simulation
which, in combination with the measured transportation time matrix, corresponds exactly to
the behavior of the real system
When these routines are used to solve the scheduling problem, they transport the pallets in
the system with an infinitely high speed (limited by the computer calculation speed). As
soon as an iteration of the transport functions terminates, the next one starts. Since none of
the dimensions or the transportation time matrix has been changed for this kind of
simulation, the resulting time indexes still correspond exactly to 0.5 seconds and may
directly be used to define the production schedule.
The only difference is that time has been compressed at maximum by doing the calculations
in absence of a timer which ensures the realistic execution of the simulation. The simulation
functions check at each iteration all the pallets which are currently in the system. A pallet
gets transported one step if the conveyor segment is running and if there is no active
stopper or elevator at the pallet's present position.
Certain constraints given by the cell architecture ask for another control layer which ensures
that odd situations do not occur while the system is operational. Since there are four robot
stations in the cell, the number of pallets with products circulating in the system was limited
to four to five (including the one just leaving the production system).

4.2 Failure management and system integration
The fail-safe mechanism for controlling production is triggered whenever a resource (robot
controller, sensor, video camera) is down or the result of an operation is negative (visual
inspection). With the help of the basic holons RH, PH, and OH and the scheduling algorithm
based on EH, a FailureManager was created. A virtually identical counterpart, the
RecoveryManager, exists, which takes care of the complementary event when a resource
recovers from the malfunctioning and comes back online.
Alternative process plans, triggered by resource failure/recovery, local storage depletion or
occurrence of rush orders, are automatically pipelined: (a) at the horizon of Ep products in
course of execution in the system, based on heterarchical contract negotiation schemes (e.g.
CNP) between valid resources, and (b) at the global horizon of ET ppP −− remaining
products, =Tp number of terminated products, based on hierarchical GSP. Two categories
of changes are considered:
1. Change occurring in the resource status at shop floor level: (i) breakdown of one

manufacturing resource (e.g. robot, machine tool); (ii) failure of one inspection
operation (e.g. visual measurement of a component/assembly); (iii) depletion of one
workstation storage (e.g. assembly parts are missing in one local robot storage).

2. Change occurring in production orders, i.e. the system receives a rush order as a new
batch request (a new APO).

All these situations trigger a fail-safe mechanism which manages the changes, providing
respectively fault-tolerance at critical events in the first category, and agility in reacting (via
ERP) to high-priority batch orders. A FailureManager was created for managing changes in

 Programmable Logic Controller

20

resource status. A virtually identical counterpart, the RecoveryManager, takes care of the
complementary event when a resource recovers from breakdown or missing parts are fed to
the empty storage.
The states describing the processing capabilities of a resource and the actions taken while
transiting from one state to another are presented in Fig. 12.

Fig. 12. Actions taken when a resource is changing from a state to another

Upon monitoring the processing resources (robots), their status may be at run time: available
– the resource can process products; failed – the resource doesn’t respond to the
interrogation of the PLC (the entity responsible for Order Holon execution), and
consequently cannot be used in production; no stock – similar to failed but handled
differently (the resource cannot be used in production during its re-supply, but it does
respond to PLC status interrogations).
There are two types of information exchanges between the PLC (master over OH execution)
and the resource controllers (robot, CNC) for estimation of their status during production
execution:
• Background interrogation: periodic polling of RQST_STATUS and ACK_STATUS digital

I/O lines between the PLC – OH coordinator and the Resource Controllers (robot,
CNC).

• Ultimate interrogation: just before taking the decision to direct a pallet (already
scheduled to a robot station) to the corresponding robot workplace, a TCP/IP
communication between the PLC and the robot controller takes place (see Fig. 13). This
communication practically validates the execution of the current OH operation on the
particular resource (robot).

In this protocol, READY is a signal generated by the Robot Controller indicating the idle or
busy state of the resource (robot). The PLC requests through its digital output line RQST-JOB
to use the robot for an assigned OH operation upon the product placed on the pallet waiting
to enter the robot workstation. D1 details the scheduled job via the TCP PLC transmission
line from the PLC to the Robot Controller. The Robot Controller indicates in D2 job
acceptance or denial via the TCP Robot transmission line. When the job is accepted, the
pallet is directed towards the robot's workplace, where its arrival is signalled to the Robot
Controller by the Pal in Pos digital output signal of the PLC.
Job Done is a signal indicating job termination (D3 details the way the job terminated:
success, failure). T1 is the decision time on job acceptance (storage evaluation etc), T2 is the
transport time to move the pallet from the main conveyor loop to the robot workplace, and
T3 is the time for job execution.

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

21

Fig. 13. Communication protocol between the PLC and a Robot Controller for authorizing
an OH operation execution

Upon periodic interrogation, the entity coordinating OH execution – the PLC – checks the
status of all resources, which acknowledge being available or failed. The ultimate
interrogation checks only the state of one resource – the one for which a current operation of
an OH was scheduled; during this exchange of information, the PLC is informed whether
the resource is available, failed or valid yet unable to execute the requested OH operation
upon the product due to components missing in its storage (no stock status).
When the failure status of a resource is detected, the FailureManager is called, executing a
number of actions according to the procedure given below (Fig. 14):
1. Stop immediately the transitions of executing OH, i.e. the circulation of

products_on_pallets in the cell; production continues however at the remaining valid
resources (robots, machine tools).

2. Update the resource holons with the new states of all robots.
3. Read Order Holons currently in execution (which are currently in the production cell).
4. Evaluate all products if they can still be finished, by checking the status of each planned

OH:
• if the OH was in the failing robot station, mark it as failed and evacuate its

product_on_pallet;
• if the OH is in the system, but cannot be completed anymore because the failed resource

was critical for this product, mark it as failed and evacuate its product_on_pallet;
• if the OH is not yet in the system, but cannot be completed due to the failure of the

resource which is critical for that product, mark it as failed (en .is the total number of
such OH).

5. For the remaining failwipwip nnn −=' schedulable OH in the system, locate their

products_on_pallets and initialize the transport simulation associated to the current
operational configuration of the system. Authorise the '

wipn OH to launch Contract Net

Protocol-based negotiations (HBM) with the remaining available Resource Holons for
re-scheduling of their associated operations. wipn are the OH currently introduced in

READ

RQST-

TCP Robot

TCP PLC

Pal In Pos

Job Done

D

D

T1 T3T2

D

 Programmable Logic Controller

22

the system (in the present implementation, 5≤wipn), and failn is the total number of

OH currently in the system, which cannot be finished because they need the failed
resource at some moment during their execution.

Fig. 14. Dynamic OH rescheduling at resource failure/storage depletion with embedded
CNP job negotiation

6. Run the Global Production Scheduling algorithm for the ewipfin nnnN −−− OH not

yet introduced in the system, where a number of N OH was scheduled in total and

finn OH were finished.

7. Delete the orders stored on the system and transfer the updated orders to the system.
Resume product_on_pallet transfer within the transport system (allow OH transitions in the
system).
It might happen that a failed robot gets fixed before the current manufacturing cycle is
finished. In this recovery case, the cell regained the ability to run at full capacity but the
lined up orders do not make use of this fact, as they are managed by the system in a

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

23

degraded mode. The procedure of rescheduling back the Order Holons is virtually identical
to the one used in case of failure; the main difference is that none of the products_on_pallets
being currently processed need to be evacuated since there is no reason to assume they
could not be completed. Any orders that were marked as failed due to resource
unavailability are now untagged and included in the APO list for scheduling as the may be
manufactured again due to resource recovery (Lastra and Delamerm, 2006; Leitao et al,
2007).

4.2 Automatic re-supply of workplaces
In case of local storage depletion, the OH waiting to enter the robot station with exhausted
storage will be either delayed if the resource is critical or re scheduled to another resource
disposing of the missing component and able to perform the current operation. In such a
situation, two actions take place:
1. One Supply Holon (SH) is created by the GSP, by specifying the type and number of

parts to be retrieved, the supply source (a central cell storage tended by a SCARA robot
under visual guidance), and the restoring destination (the exhausted local robot
storage). The SH is immediately started.

2. From the wipn OH currently in execution, dn will be delayed until the empty storage,

which is critical for certain of their mounting operations, is restored and

dwipwip nnn −='' OH will be re scheduled by the holonic bidding mechanism (HBM) to

robots disposing of necessary assembly parts.
A lock is put on the system, and no further OH (a new pallet) is introduced in the system
until the last one of the dn delayed OH is completed and exits the system. When both the
SH and all dn OH are terminated, the lock is suspended and the remaining OH are
introduced in the system in packets of wipn , their re-scheduling being not necessary.

4.2 Treatment of rapid orders
The system is agile to changes occurring in production orders too, i.e. manages rush orders
received as new batch requests from the ERP level while executing an already scheduled batch
production (a sequence of Order Holons).
Because of the similarities between a task run on a processor and a batch of orders executed
in a cell (both are preemptive, independent of other tasks/batches, have a release, a delivery
date and an fixed or limited interval in which they are processed), it was decided to use the
Earliest Deadline First (EDF) procedure to schedule new batches (rush orders) for the cell.
Earliest Deadline First (EDF) is a dynamic scheduling algorithm generally used in real-time
operating systems for scheduling periodic tasks on resources, e.g. processors (Sha et al.,
2004, Lipari, 2005). It works by assigning a unique priority to each task, the priority being
inversely proportional to its absolute deadline and then placing the task in an ordered
queue. Whenever a scheduling event occurs the queue will be searched for the task closest
to its deadline. A feasibility test for the analysis of EDF scheduling was presented in (Liu and
Layland, 1973); the test showed that under the following assumptions: (A1) all tasks are
periodic, independent and fully preemptive; (A2) all tasks are released at the beginning of
the period and have deadlines equal to their period; (A3) all tasks have a fixed computation
time or a fixed upper bound which is less or equal to their period; (A4) no task can
voluntarily stop itself; (A5) all overheads are assumed to be 0; (A6) there is only one

 Programmable Logic Controller

24

processor, and timecycle,timeexecution , tasksofnumber ,1
1

===≤∑
=

ii

n

i i

i TCn
T
C

(a set of

n periodic tasks can be scheduled if, or, in other words, if the utilization of the processor
(resource) is less than 100%).
A batch or Aggregate Product Order list (APO) is composed of raw orders (list of products to
be manufactured); this is why two different batches are independent. Nevertheless, there is
a difference between a task and a batch of products: a task is periodic while a batch is
generally a periodic. This means that instead of testing the feasibility of assigning batches to
the production system considering the equation above, one can use the following test: "for
an ordered queue (based on delivery date) of n batches with computed makespan, if

ni
i

j
ij ,1,atedelivery_dmakespan

1

=≤∑
=

, then the batches can be assigned to the production

cell using EDF without passing over the delivery dates".
This EDF approach is used to insert rush orders in a production already scheduled by the
GPS; the steps below are carried out for inserting a new production batch (rush order)
during the execution of a previously created sequence of Order Holons (see Fig. 15):

Fig. 15. Add rush order diagram and integration with dynamic job re-scheduling based on
CNP negotiation

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

25

0. Compute the remaining time for finishing the rest of the current batch (if necessary).
1. Insert new production data: product types, quantities, delivery dates.
2. Separate products according to their delivery date.
3. Form the entities "production batches" (a production batch is composed of all the

products having the same delivery date).
4. Generate raw orders inside the production batches (APO lists).
5. Schedule the raw orders (using a GPS algorithm, e.g. KBS or Step Scheduler), compute

the makespan and test if the inserted batch can be done (the makespan is smaller than
the time interval to delivery date if production starts now).

6. Analyse the possibility of allocating the batches to the manufacturing cell using the
Earliest Deadline First procedure and second equation for feasibility test.

7. Allocate the batches on the real production system according to the EDF procedure.
8. Resume execution process with new scheduled Order Holons.
In this mechanism for the management of changes in production orders, an inserted batch is a
batch that arrives while another one is in execution. A monitored batch is one whose orders
are scheduled and assigned to the cell (it has a priority and is waiting to enter execution). A
current batch is one in execution.
The capability of adding rush orders to production needs a new entity – the batch. In this
way job scheduling is done at batch level (all orders with the same delivery date are
scheduled together) and then batches are assigned to the cell according to their delivery
date, using the EDF procedure (Table 1).

Name Description
batch_name Name or index of the batch
delivery_date Delivery date of the orders
requested_products Vector containing the products to be executed

used_resources Vector containing the configuration used for current batch
planning

orders_to_execute Vector containing the entities OH already scheduled using a
specified cell structure (defined by the variable used_resources)

makespan The time interval needed for the current batch to be executed if
started now and not interrupted (it is a result of scheduling)

Table 1. The minimal structure of a batch holon

Because the process of batch execution is interruptible (preemptive system), new batches
(rush orders) can be introduced exactly at the moment of their arrival. The insertion process
is triggered by the arrival of a "new order" event; a real-time acceptance response can be
provided (via the ERP level) to the customer if the rush order can be executed by the
requested delivery date.

5. Experimental results
The distributed control solution was implemented, tested and validated on a real
manufacturing structure with industrial assembly robots and 4-axis CNC milling machines,
using the holonic approach. This development platform was recently put in place in the
Centre of Research in Robotics and CIM within the University Politehnica of Bucharest.

 Programmable Logic Controller

26

The described holonic implementation framework allows networking equipment from
different producers. The cost of the development platform is directly reflected in its high
precision performances, integrated inspection services, relaxation of material presenting
constraints, fixture simplification and management of changes.
The control structure is fully operational, both in the normal hierarchical mode and upon
switching automatically to the heterarchical one in response to rush order requests, part
supply and resource failures.
An example of production definition at batch level for four products (H-, U-, L-, and C-type
products) resulting from the succession 8 operations consisting of assemblies, milling and
visual inspections.
For the experiments reported, the number of products simultaneously in execution was
limited to 5. Table 2 below gives the production times resulting from the Step Scheduler
RSRP computation in two scenarios: (i) only H-type products; (ii) equal number of H-, U-, L-
and C-type of products within one of the four batch sizes (batch sizes were 4, 20, 40 and 60
products):

Production time [time units] Worst recovery time [time units]
Batch
size

H-type
[RSRP /

CNP]

Equal number of
H-, U-, L-, and C-type

[RSRP/CNP negotiation]

Alternate OH at
[packet = 5] level

(resource i failure: RiF)

New SH for restoring
Local Storage i (LSi)

at depletion
4 684 / 734 663 / 687 6.4 (R1F) 97 (LS1)

20 2841 /
3112 2550 / 2712 6.5 (R2F) 112 (LS2)

40 5485 /
5962 4934 / 5288 6.8 (R3F) 136 (LS3)

60 8129 /
9089 7362 / 7902 6.5 (R4F) 83 (LS4)

Table 2. Production time for H-, U-, L- and C-type batches and resuming times at resource
failure

The system's behaviour was tested with good results at storage depletion (less than 68
seconds to generate a SH and restore the furthest local robot storage) and resource failure
(SC, switch and RC). Future work will be directed towards integrating the process control-
and ERP areas through an enhanced information management system based on RFID.

6. Conclusion
The scope of this chapter was the definition of a PLC-centred framework for developing an
integrated solution aiming at controlling the resources from a flexible manufacturing system
and at the management of the clients’ orders. The key characteristics of the proposed
framework are autonomy of the control systems' resources and the cooperation between
them.
The general features of the proposed holonic implementing framework facilitate, beyond the
product assembling with machined components, the development of any other discrete,
repetitive manufacturing applications. Features like: decomposition of the production
system into entities relative to the basic areas specific to an enterprise (production, process
and business), description of the types of manufacturing entities and of the communication

Holonic Robot Control for Job Shop Assembly by Dynamic Simulation

27

protocols that take place between them, and the decision scenarios during resource failure /
recovery and stock restoring are reusable.
From the algorithmic point of view, the proposed resolved scheduling rate planner (RSRP)
based on variable-timing simulation, facing the NP complexity aspect of the batch
scheduling problem can be reused for any topology of the material transportation system,
due to its graph–type, object-oriented description.

7. References
Bongaerts, L., Wyns, J., Detand, J., Van Brussel, H., Valckenaers, P., 1996. Identification of

manufacturing holons. Proceedings of the European Workshop for Agent-Oriented
Systems in Manufacturing, Albayrak, S., Bussmann, S. (Eds.), Berlin, 57-73

Bongaerts, P., Monostori, L, McFarlane, D., Kadar, B., 1998. Hierarchy in distributed shop
floor control. Proceedings of the 1st Int. Workshop on Intelligent Manufacturing
Systems IMS-EUROPE, Ed. EPFL, Lausanne, 97-113

Borangiu, Th., 2004. Intelligent Image Processing in Robotics and Manufacturing, Romanian
Academy Publishing House, Bucharest

Borangiu, T., Ivanescu, N., Raileanu, S., Rosu, A., 2008. Vision-Guided Part Feeding in a
holonic Manufacturing System with Networked Robots, Proceedings of Int.
Workshop RAAD 2008, Ancona, Italy

Borangiu Th., Gilbert P., Ivanescu N., Rosu A., 2008. Holonic Robot Control for Job Shop
Assembly by Dynamic Simulation, Int. Conference MED’08, Ajaccio

Borangiu Th., Gilbert P., Ivanescu N.A., Rosu A., 2009. An Implementing Framework for
Holonic Manufacturing Control with Multiple Robot-Vision Stations, Engineering
Applications of Artificial Intelligence 22 (2009), 505-521, Elsevier

Cheng, F.-T., Chang, C.-F., Wu, S.-L., 2006. Development of Holonic Manufacturing
Execution Systems, Industrial Robotics: Theory, Modelling and Control, Advanced
Robotics Systems, Ed. Pro Literatur Verlag Robert Mayer-Scholz Germany, Vienna

Deen, S.M., 2003. Agent-Based Manufacturing – Advances in Holonic Approach, Springer
Dorigo, M., and Stuzle, T., 2004. Ant Colony optimization. The MIT Press
Koestler, A. The Ghost in the Machine. Hutchinson publishing Group, London, 1967
Kusiak, A., 1990. Intelligent Manufacturing Systems, Prentice Hall, Englewood Cliffs, New

York
Lipari, G., 2005. Sistemi in tempo reale (EDF), Course Scuola Superiore, Sant’Anna, Pisa
Liu C.L., Layland, J.W., 1973. Scheduling algorithms for multiprogramming in a hard real-

time environment, Journal of ACM 20, 1, 46-61
Maione, G., and Naso, D., 2003. A soft computing approach for task contracting in multi-

agent manufacturing control. Computers in Industry, 52, 199–219
Markus, A., Vancza, T., Monostori, L., 1996. A market approach to holonic manufacturing.

Annals of the CIRP 45, 1, 433-436
McFarlane D, Sarma S, Chirn Jin Lung and Wong C Y, and Ashton K,. 2002. ‘‘The intelligent

product in manufacturing control and management’’. Proceedings of the 15th
Triennial World Congress, Barcelona

Morel, G., Panetto, H., Zaremba, M., Mayer, F., 2003. Manufacturing enterprise control and
management system engineering: Rationales and open issues, IFAC Annual
Reviews in Control

 Programmable Logic Controller

28

Nylund H., Salminen, K., Andersson, P.H., 2008. A multidimensional approach to digital
manufacturing systems, Proceedings of the 5th International Conferebnce on Digital
Enterprise Technology, Nantes

Okino, N., 1993. Bionic Manufacturing System in Flexible Manufacturing System: past –
present – future. J. Peklenik (ed), CIRP, Paris, 73-95

Onori, M., Barata, J., Frey, R., 2006. Evolvable assembly systems basic principles, IT for
Balanced Manufacturing Systems 220, IFIP, W. Shen (Ed.), Springer, Boston, 317-
328

Ramos, C., 1996. A holonic approach for task scheduling in manufacturing systems,
Proceedings of the IEEE Int. Conf. on Robotics and Automation, Minneapolis, USA,
2511-2516

Sallez Y., Berger T., Trentesaux D., 2009. Open-control: a new paradigm for integrated
product-driven manufacturing Control, Proceedings of the 13th IFAC Symposium
on Information Control Problems in Manufacturing (INCOM '09), Moscow

Sauer O., 2008. Automated engineering of manufacturing execution systems – a contribution
to “adaptivity” in manufacturing companies, 5th International Conference on
Digital Enterprise Technology Nantes

Sha, L. et al., 2004. Real Time Scheduling Theory: A Historical Perspective, Real-Time
Systems, Vol. 28, No. 2-3, 101-155

Trentesaux, D., Dindeleux, R. and Tahon, C., 1009. A MultiCriteria Decision Support System
for Dynamic task Allocation in a Distributed Production Activity Control Structure.
Computer Integrated Manufacturing, 11 (1), 3-17

Usher, M.J., Wang, Y-C., 2000. Negotiation between intelligent agents for manufacturing
control, Proc. of the EDA 2000 Conference, Orlando, Florida

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, L,. 1998. Reference
architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37
(3), 255–274

Wyns, J., Van Ginderachter, T., Valckenaers, P., Van Brussel, H., 1997. Integration of
resource allocation and process control in holonic manufacturing systems,
Proceedings of the 29th CIRP Int. Seminar on Manufacturing Systems, 57-62

Zbib, N., Raileanu, S., Sallez, Y., Berger, T. and Trentesaux, D., 2008. From Passive Products
to Intelligent Products: the Augmentation Module Concept. Proceedings of the 5th
International Conference on Digital Enterprise Technology, Nantes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

